41 research outputs found

    Pathogen genetic diversity a challenge for vaccine development: Looking for the pathogen’s Achilles’ heel

    Get PDF
    Creation of variant forms has serious consequences in diagnostic, treatment strategies and the future vaccine development. Thus, the actual and future roles of the altered or emergent pathogens in the global pandemic of AIDS, Malaria, Flu and Ebola must be monitored in new molecular epidemiological studies. During the last 5 years, we studied the genetic structure of several pathogens such as 1] malaria parasite showing that gene deletion, recombination can occur and lead to false RDT negative and to the creation of new antigens (hybrid parasites); 2] in HIV, our findings indicate a shift in the virus population circulating over time in Mali. Those observations are suggesting that a vaccine development against those pathogens such Plasmodium falciparum parasite and HIV will be a challenge. Our approach that is to target pieces of antigens within a genome which must be well conserved across the specie and immunogenic enough in boosting the immune response. Four steps were identified in that approach which are: 1] Genome mining using computational and experimental tools to identify genes that encode proteins with promising vaccine antigens properties, 2] use of the Immunoinformatics tools to map protein sequences for short, linear putative T-cell epitopes CTL/ T helper, 3] then candidates are synthesized as peptides and evaluated for HLA binding and antigenicity (in vitro evaluation) and then 4] Prototype epitope-based vaccines are evaluated for immunogenicity in human Host (in vivo evaluation). Our laboratory has partnered with the GAIA foundation to test this approach in Mali

    Cross-conservation of T-cell epitopes: Now even more relevant to (H7N9) influenza vaccine design

    Get PDF
    A novel avian-origin H7N9 influenza strain emerged in China in April 2013. Since its re-emergence in October–November 2013, the number of reported cases has accelerated; more than 220 laboratory-confirmed cases and 112 deaths (case fatality rate of 20–30%) have been reported. The resurgence of H7N9 has re-emphasized the importance of making faster and more effective influenza vaccines than those that are currently available. Recombinant H7 hemagglutinin (H7-HA) vaccines have been produced, addressing the first problem. Unfortunately, these recombinant subunit vaccine products appear to have failed to address the second problem, influenza vaccine efficacy. Reported unadjuvanted H7N9 vaccine seroconversion rates were between 6% and 16%, nearly 10-fold lower than rates for unadjuvanted vaccine seroconversion to standard H1N1 monovalent (recombinant) vaccine (89% to pandemic H1N1). Could this state of affairs have been predicted? As it turns out, yes, and it was. In that previous analysis of available H7-HA sequences, we found fewer T-cell epitopes per protein than expected, and predicted that H7-HA-based vaccines would be much less antigenic than recent seasonal vaccines. Novel approaches to developing a more immunogenic HA were offered for consideration at the time, and now, as the low immunogenicity of H7N9 vaccines appears to indicate, they appear to be even more relevant. More effective H7N9 influenza vaccines can be produced, provided that the role of T-cell epitopes is carefully considered, and accumulated knowledge about the importance of cross-conserved epitopes between viral subtypes is applied to the design of those vaccines

    Protocol for a parallel group, two-arm, superiority cluster randomised trial to evaluate a community-level complementary-food safety and hygiene and nutrition intervention in Mali:the MaaCiwara study (version 1.3; 10 November 2022)

    Get PDF
    BACKGROUND: Diarrhoeal disease remains a significant cause of morbidity and mortality among the under-fives in many low- and middle-income countries. Changes to food safety practices and feeding methods around the weaning period, alongside improved nutrition, may significantly reduce the risk of disease and improve development for infants. We describe a protocol for a cluster randomised trial to evaluate the effectiveness of a multi-faceted community-based educational intervention that aims to improve food safety and hygiene behaviours and enhance child nutrition. METHODS: We describe a mixed-methods, parallel group, two-arm, superiority cluster randomised controlled trial with baseline measures. One hundred twenty clusters comprising small urban and rural communities will be recruited in equal numbers and randomly allocated in a 1:1 ratio to either treatment or control arms. The community intervention will be focussed around an ideal mother concept involving all community members during campaign days with dramatic arts and pledging, and follow-up home visits. Participants will be mother–child dyads (27 per cluster period) with children aged 6 to 36 months. Data collection will comprise a day of observation and interviews with each participating mother–child pair and will take place at baseline and 4 and 15 months post-intervention. The primary analysis will estimate the effectiveness of the intervention on changes to complementary-food safety and preparation behaviours, food and water contamination, and diarrhoea. Secondary outcomes include maternal autonomy, enteric infection, nutrition, child anthropometry, and development scores. A additional structural equation analysis will be conducted to examine the causal relationships between the different outcomes. Qualitative and health economic analyses including process evaluation will be done. CONCLUSIONS: The trial will provide evidence on the effectiveness of community-based behavioural change interventions designed to reduce the burden of diarrhoeal disease in the under-fives and how effectiveness varies across different contexts. TRIAL REGISTRATION: ISRCTN14390796. Registration date December 13, 2021 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-022-06984-5

    Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa.

    Get PDF
    The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection

    Retraction.

    Get PDF
    This is a retraction of 'Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa' 10.1126/science.add873

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Human Gene Expression in Uncomplicated Plasmodium falciparum Malaria

    No full text
    To examine human gene expression during uncomplicated P. falciparum malaria, we obtained three samples (acute illness, treatment, and recovery) from 10 subjects and utilized each subject’s recovery sample as their baseline. At the time of acute illness (day 1), subjects had upregulation of innate immune response, cytokine, and inflammation-related genes (IL-1β, IL-6, TNF, and IFN-γ), which was more frequent with parasitemias >100,000 per μL and body temperatures ≥39∘C. Apoptosis-related genes (Fas, BAX, and TP53) were upregulated acutely and for several days thereafter (days 1–3). In contrast, the expression of immune-modulatory (transcription factor 7, HLV-DOA, and CD6) and apoptosis inhibitory (c-myc, caspase 8, and Fas Ligand G) genes was downregulated initially and returned to normal with clinical recovery (days 7–10). These results indicate that the innate immune response, cytokine, and apoptosis pathways are upregulated acutely in uncomplicated malaria with concomitant downregulation of immune-modulatory and apoptosis inhibitory genes
    corecore