8 research outputs found

    New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    Full text link
    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200

    Relativistic Dissipative Hydrodynamics: A Minimal Causal Theory

    Get PDF
    We present a new formalism for the theory of relativistic dissipative hydrodynamics. Here, we look for the minimal structure of such a theory which satisfies the covariance and causality by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). It can readily be applied to the full three-dimensional hydrodynamical calculations. We apply our formalism to the Bjorken model and the results are shown to be analogous to the IS.Comment: 25 pages, 2 figures, Phys. Rev. C in pres

    Hadron production in heavy relativistic systems

    Get PDF
    We investigate particle production in heavy-ion collisions at RHIC energies as function of incident energy, and centrality in a three-sources Relativistic Diffusion Model. Pseudorapidity distributions of produced charged hadrons in Au + Au and Cu + Cu collisions at sqrt(s_NN) = 19.6 GeV, 62.4 GeV, 130 GeV and 200 GeV show an almost equilibrated midrapidity source that tends to increase in size towards higher incident energy, and more central collisions. It may indicate quark-gluon plasma formation prior to hadronization.Comment: 8 pages, 3 figure

    Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions

    Full text link
    We analyze the effects of different forms of the sound-velocity function cs(T) on the hydrodynamic evolution of matter formed in the central region of relativistic heavy-ion collisions. At high temperatures (above the critical temperature Tc) the sound velocity is calculated from the recent lattice simulations of QCD, while in the low temperature region it is obtained from the hadron gas model. In the intermediate region we use different interpolations characterized by the values of the sound velocity at the local maximum (at T = 0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature dependent sound velocity functions yield the entropy density, which is consistent with the lattice QCD simulations at high temperature. Our calculations show that the presence of a distinct minimum of the sound velocity leads to a very long (about 20 fm/c) evolution time of the system, which is not compatible with the recent estimates based on the HBT interferometry. Hence, we conclude that the hydrodynamic description is favored in the case where the cross-over phase transition renders the smooth sound velocity function with a possible shallow minimum at Tc.Comment: 6 pages, 3 figures, talk given at SQM'07 Levoca, Slovaki

    Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas

    Full text link
    Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity eta to entropy density s in units of hbar/k_B is bounded by a constant. Here, hbar is Planck's constant and k_B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that eta/s is greater or equal to hbar/(4 pi k_B). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of eta/s that are smaller than hbar/k_B. These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases, and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory, and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.Comment: 76 pages, 11 figures, review article, extensive revision
    corecore