1,715 research outputs found

    Phenomenological approach to the critical dynamics of the QCD phase transition revisited

    Full text link
    The phenomenological dynamics of the QCD critical phenomena is revisited. Recently, Son and Stephanov claimed that the dynamical universality class of the QCD phase transition belongs to model H. In their discussion, they employed a time-dependent Ginzburg-Landau equation for the net baryon number density, which is a conserved quantity. We derive the Langevin equation for the net baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they discussed the mode coupling induced through the {\it irreversible} current. Here, we show the {\it reversible} coupling can play a dominant role for describing the QCD critical dynamics and that the dynamical universality class does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in J.Phys.

    Microscopic formula for transport coefficients of causal hydrodynamics

    Full text link
    The Green-Kubo-Nakano formula should be modified in relativistic hydrodynamics because of the problem of acausality and the breaking of sum rules. In this work, we propose a formula to calculate the transport coefficients of causal hydrodynamics based on the projection operator method. As concrete examples, we derive the expressions for the diffusion coefficient, the shear viscosity coefficient, and corresponding relaxation times.Comment: 4 pages, title was modified, final version published in Phys. Rev.

    A Unified Description of Quark and Lepton Mass Matrices in a Universal Seesaw Model

    Get PDF
    In the democratic universal seesaw model, the mass matrices are given by \bar{f}_L m_L F_R + \bar{F}_L m_R f_R + \bar{F}_L M_F F_R (f: quarks and leptons; F: hypothetical heavy fermions), m_L and m_R are universal for up- and down-fermions, and M_F has a structure ({\bf 1}+ b_f X) (b_f is a flavour-dependent parameter, and X is a democratic matrix). The model can successfully explain the quark masses and CKM mixing parameters in terms of the charged lepton masses by adjusting only one parameter, b_f. However, so far, the model has not been able to give the observed bimaximal mixing for the neutrino sector. In the present paper, we consider that M_F in the quark sectors are still "fully" democratic, while M_F in the lepton sectors are partially democratic. Then, the revised model can reasonably give a nearly bimaximal mixing without spoiling the previous success in the quark sectors.Comment: 7 pages, no figur

    Shear viscosity coefficient and relaxation time of causal dissipative hydrodynamics in QCD

    Full text link
    The shear viscosity coefficient and the corresponding relaxation time for causal dissipative hydrodynamics are calculated based on the microscopic formula proposed in [T. Koide and T. Kodama, Phys. Rev. \textbf{E 78}, 051107 (2008)]. Here, the exact formula is transformed into a more compact form and applied it to evaluate these transport coefficients in the chiral perturbation theory and perturbative QCD. It is shown that in the leading order calculation, the causal shear viscosity coefficient η\eta reduces to that of the ordinary Green-Kubo-Nakano formula, and the relaxation time τπ\tau_{\pi} is related to η\eta and pressure PP by a simple relationship, τπ=η/P\tau_{\pi}=\eta/P.Comment: 4 pages, 3 figures, errors of calcualtions were corrected, and some rederences and discussions were added. Accepted version for publication in PR

    Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method

    Full text link
    We derive a coarse-grained equation of motion of a number density by applying the projection operator method to a non-relativistic model. The derived equation is an integrodifferential equation and contains the memory effect. The equation is consistent with causality and the sum rule associated with the number conservation in the low momentum limit, in contrast to usual acausal diffusion equations given by using the Fick's law. After employing the Markov approximation, we find that the equation has the similar form to the causal diffusion equation. Our result suggests that current-current correlations are not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.

    Transport Coefficients of Non-Newtonian Fluid and Causal Dissipative Hydrodynamics

    Full text link
    A new formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using the projection operator method (Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This is an extension of the Green-Kubo-Nakano (GKN) formula to the case of non-Newtonian fluids, which is the essential factor to preserve the relativistic causality in relativistic dissipative hydrodynamics. This formula is the generalization of the GKN formula in the sense that it can reproduce the GKN formula in a certain limit. In this work, we extend the previous work so as to apply to more general situations.Comment: 15 pages, no figure. Discussions are added in the concluding remarks. Accepted for publication in Phys. Rev.

    Tribimaximal Neutrino Mixing and a Relation Between Neutrino- and Charged Lepton-Mass Spectra

    Get PDF
    Brannen has recently pointed out that the observed charged lepton masses satisfy the relation m_e +m_\mu +m_\tau = {2/3} (\sqrt{m_e}+\sqrt{m_\mu}+\sqrt{m_\tau})^2, while the observed neutrino masses satisfy the relation m_{\nu 1} +m_{\nu 2} +m_{\nu 3} = {2/3} (-\sqrt{m_{\nu 1}}+\sqrt{m_{\nu 2}}+\sqrt{m_{\nu 3}})^2. It is discussed what neutrino Yukawa interaction form is favorable if we take the fact pointed out by Brannen seriously.Comment: 13 pages, presentation modifie

    New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    Full text link
    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200

    Spin Path Integrals and Generations

    Full text link
    The spin of a free electron is stable but its position is not. Recent quantum information research by G. Svetlichny, J. Tolar, and G. Chadzitaskos have shown that the Feynman \emph{position} path integral can be mathematically defined as a product of incompatible states; that is, as a product of mutually unbiased bases (MUBs). Since the more common use of MUBs is in finite dimensional Hilbert spaces, this raises the question "what happens when \emph{spin} path integrals are computed over products of MUBs?" Such an assumption makes spin no longer stable. We show that the usual spin-1/2 is obtained in the long-time limit in three orthogonal solutions that we associate with the three elementary particle generations. We give applications to the masses of the elementary leptons.Comment: 20 pages, 2 figures, accepted at Foundations of Physic
    • …
    corecore