2,629 research outputs found
Quark Mass Matrix with a Structure of a Rank One Matrix Plus a Unit Matrix
A quark mass matrix model is proposed where
and is a
unit matrix plus a rank one matrix. Up- and down-quark mass matrices and
are described in terms of charged lepton masses and additional three
parameters (one in and two in ). The model can predict reasonable
quark mass ratios (not only , , and , but
also ) and Kobayashi-Maskawa matrix elements.Comment: 8 pages, Latex, no figure
Top Quark Mass Enhancement in a Seesaw-Type Quark Mass Matrix
We investigate the implications of a seesaw type mass matrix, i.e.,
, for quarks and leptons under the assumption
that the matrices and are common to all flavors (up-/down- and
quark-/lepton- sectors) and the matrices characterizing the heavy fermion
sectors have the form [(unit matrix) + (a democratic matrix)] where
is a flavor parameter. We find that by adjusting the complex parameter ,
the model can provide that while at the same time keeping without assuming any parameter with hierarchically different values
between and . The model with three adjustable parameters under the
``maximal" top quark mass enhancement can give reasonable values of five quark
mass ratios and four KM matrix parameters.Comment: 22 pages, Latex, 5 postscript figures available upon reques
Seesaw Mass Matrix Model of Quarks and Leptons with Flavor-Triplet Higgs Scalars
In a seesaw mass matrix model M_f = m_L M_F^{-1} m_R^\dagger with a universal
structure of m_L \propto m_R, as the origin of m_L (m_R) for quarks and eptons,
flavor-triplet Higgs scalars whose vacuum expectation values v_i are
proportional to the square roots of the charged lepton masses m_{ei}, i.e. v_i
\propto \sqrt{m_{ei}}, are assumed. Then, it is investigated whether such a
model can explain the observed neutrino masses and mixings (and also quark
masses and mixings) or not.Comment: version accepted by EPJ
A_4 Symmetry and Lepton Masses and Mixing
Stimulated by Ma's idea which explains the tribimaximal neutrino mixing by
assuming an A_4 flavor symmetry, a lepton mass matrix model is investigated. A
Frogatt-Nielsen type model is assumed, and the flavor structures of the masses
and mixing are caused by the VEVs of SU(2)_L-singlet scalars \phi_i^u and
\phi_i^d (i=1,2,3), which are assigned to {\bf 3} and ({\bf 1}, {\bf 1}',{\bf
1}'') of A_4, respectively.Comment: 13 pages including 1 table, errors in Sec.7 correcte
A Unified Description of Quark and Lepton Mass Matrices in a Universal Seesaw Model
In the democratic universal seesaw model, the mass matrices are given by
\bar{f}_L m_L F_R + \bar{F}_L m_R f_R + \bar{F}_L M_F F_R (f: quarks and
leptons; F: hypothetical heavy fermions), m_L and m_R are universal for up- and
down-fermions, and M_F has a structure ({\bf 1}+ b_f X) (b_f is a
flavour-dependent parameter, and X is a democratic matrix). The model can
successfully explain the quark masses and CKM mixing parameters in terms of the
charged lepton masses by adjusting only one parameter, b_f. However, so far,
the model has not been able to give the observed bimaximal mixing for the
neutrino sector. In the present paper, we consider that M_F in the quark
sectors are still "fully" democratic, while M_F in the lepton sectors are
partially democratic. Then, the revised model can reasonably give a nearly
bimaximal mixing without spoiling the previous success in the quark sectors.Comment: 7 pages, no figur
Phenomenological approach to the critical dynamics of the QCD phase transition revisited
The phenomenological dynamics of the QCD critical phenomena is revisited.
Recently, Son and Stephanov claimed that the dynamical universality class of
the QCD phase transition belongs to model H. In their discussion, they employed
a time-dependent Ginzburg-Landau equation for the net baryon number density,
which is a conserved quantity. We derive the Langevin equation for the net
baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they
discussed the mode coupling induced through the {\it irreversible} current.
Here, we show the {\it reversible} coupling can play a dominant role for
describing the QCD critical dynamics and that the dynamical universality class
does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in
J.Phys.
Large and Unified Description of Quark and Lepton Mixing Matrices
We present a revised version of the so-called "yukawaon model", which was
proposed for the purpose of a unified description of the lepton mixing matrix
and the quark mixing matrix . It is assumed from a
phenomenological point of view that the neutrino Dirac mass matrix is
given with a somewhat different structure from the charged lepton mass matrix
, although was assumed in the previous model. As a result, the
revised model predicts a reasonable value with
keeping successful results for other parameters in as well as
and quark and lepton mass ratios.Comment: 13 pages, 3 figures, version accepted by EPJ
Universal Seesaw Mass Matrix Model with an S_3 Symmetry
Stimulated by the phenomenological success of the universal seesaw mass
matrix model, where the mass terms for quarks and leptons f_i (i=1,2,3) and
hypothetical super-heavy fermions F_i are given by \bar{f}_L m_L F_R +\bar{F}_L
m_R f_R + \bar{F}_L M_F F_R + h.c. and the form of M_F is democratic on the
bases on which m_L and m_R are diagonal, the following model is discussed: The
mass terms M_F are invariant under the permutation symmetry S_3, and the mass
terms m_L and m_R are generated by breaking the S_3 symmetry spontaneously. The
model leads to an interesting relation for the charged lepton masses.Comment: 8 pages + 1 table, latex, no figures, references adde
- …