224 research outputs found

    Big-bang nucleosynthesis with a long-lived charged massive particle including 4^4He spallation processes

    Full text link
    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.Comment: 12 pages, 4 figures, 1 table, references added, all figures correcte

    Frequency-dependent ERK phosphorylation in spinal neurons by electric stimulation of the sciatic nerve and the role in electrophysiological activity

    Get PDF
    The phosphorylation of extracellular signal-regulated kinase (pERK) in DRG and dorsal horn neurons is induced by the C-fiber electrical stimulation to the peripheral nerve. The present study was designed to investigate the expression and modulation of pERK in the rat dorsal horn neurons produced by repetitive electrical stimulation, and its involvement in the electrophysiological activity of dorsal horn neurons. Electrical stimulation of C-fiber intensity at different frequencies was applied to the sciatic nerve; the stimuli-induced pERK expression and the activity in dorsal horn neurons were studied by immunohistochemistry and extracellular recording, respectively. Electrical stimulation of C-fibers (3 mA) induced pERK expression in dorsal horn neurons in a frequency-dependent manner, indicating that the frequency of electrical stimulation is an important factor which activates the intracellular signal pathway in the spinal cord. To demonstrate the underlying mechanism of this frequency-dependent pERK expression, an NMDA receptor antagonist, MK-801, and a voltage sensitive calcium channel antagonist, nifedipine, were administrated intrathecally before the stimulation. We found that high frequency (0.5 Hz and 10 Hz) but not low frequent (0.05 Hz) stimulus-evoked pERK was partially inhibited by MK-801. Both high and low frequency stimulus-evoked pERK were inhibited by the nifedipine treatment. The extracellular single unit activities were recorded from the laminae I-II and V of the L4-5 dorsal horn, and we found that blockage of the intracellular ERK signal suppressed the wind-up responses in a dose-dependent manner. In contrast, any change in the mechanically evoked responses was not observed following the administration of ERK inhibitor. These observations indicate that ERK activation plays an important role in the induction of the wind-up responses in dorsal horn nociceptive neurons

    Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV) into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK) in the generation of BV-induced pain hypersensitivity.</p> <p>Results</p> <p>We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38) was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn.</p> <p>Conclusion</p> <p>The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.</p

    Up-regulation of platelet-activating factor synthases and its receptor in spinal cord contribute to development of neuropathic pain following peripheral nerve injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Platelet-activating factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a lipid mediator derived from cell membrane. It has been reported that PAF is involved in various pathological conditions, such as spinal cord injury, multiple sclerosis, neuropathic pain and intrathecal administration of PAF leads to tactile allodynia. However, the expression of PAF synthases and its receptor in the spinal cord following peripheral nerve injury is unknown.</p> <p>Methods</p> <p>Using the rat spared nerve injury (SNI) model, we investigated the expression of PAF synthases (LPCAT1 and 2) and PAF receptor (PAFr) mRNAs in the spinal cord. Reverse transcription polymerase chain reaction (RT-PCR) and double-labeling analysis of <it>in situ </it>hybridization histochemistry (ISHH) with immunohistochemistry (IHC) were employed for the analyses. Pain behaviors were also examined with PAFr antagonist (WEB2086).</p> <p>Results</p> <p>RT-PCR showed that LPCAT2 mRNA was increased in the ipsilateral spinal cord after injury, but not LPCAT1 mRNA. Double-labeling of ISHH with IHC revealed that LPCAT1 and 2 mRNAs were constitutively expressed by a subset of neurons, and LPCAT2 mRNA was increased in spinal microglia after nerve injury. RT-PCR showed that PAFr mRNA was dramatically increased in the ipsilateral spinal cord after nerve injury. Double-labeling analysis of ISHH with IHC revealed that after injury PAFr mRNA was predominantly colocalized with microglia in the spinal cord. Continuous intrathecal administration of the PAFr antagonist suppressed mechanical allodynia following peripheral nerve injury. Delayed administration of a PAFr antagonist did not reverse the mechanical allodynia.</p> <p>Conclusions</p> <p>Our data show the histological localization of PAF synthases and its receptor in the spinal cord following peripheral nerve injury, and suggest that PAF/PAFr signaling in the spinal cord acts in an autocrine or paracrine manner among the activated microglia and neurons, thus contributing to development of neuropathic pain.</p

    A self-consistent first-principles calculation scheme for correlated electron systems

    Full text link
    A self-consistent calculation scheme for correlated electron systems is created based on the density-functional theory (DFT). Our scheme is a multi-reference DFT (MR-DFT) calculation in which the electron charge density is reproduced by an auxiliary interacting Fermion system. A short-range Hubbard-type interaction is introduced by a rigorous manner with a residual term for the exchange-correlation energy. The Hubbard term is determined uniquely by referencing the density fluctuation at a selected localized orbital. This strategy to obtain an extension of the Kohn-Sham scheme provides a self-consistent electronic structure calculation for the materials design. Introducing an approximation for the residual exchange-correlation energy functional, we have the LDA+U energy functional. Practical self-consistent calculations are exemplified by simulations of Hydrogen systems, i.e. a molecule and a periodic one-dimensional array, which is a proof of existence of the interaction strength U as a continuous function of the local fluctuation and structural parameters of the system.Comment: 23 pages, 8 figures, to appear in J. Phys. Condens. Matte

    Risk Factors for Infection in Patients with Remitted Rheumatic Diseases Treated with Glucocorticoids

    Get PDF
    It is well known that infection is one of the major causes of morbidity and mortality in rheumatic disease patients treated with high-dose glucocorticoids, especially in the early phase after achievement of disease remission. The aim of this study was to identify the risk factors for infection, with a focus on the dose of glucocorticoids administered, following the achievement of disease remission in rheumatic diseases patients. We retrospectively analyzed the medical records of rheumatic disease patients who had been treated with glucocorticoids. The primary endpoint was the incidence rate of infection during a period from 1 to 2 months after the commencement of treatment. From April 2006 to March 2010, 19 of 92 patients suffered from infection during the observation period. Age≧65 yrs, presence of interstitial pneumonia, diagnosis of systemic vasculitis and serum creatinine level≧2.0mg/dl were found to be univariate predictors for infection. However, only the presence of interstitial pneumonia was an independent risk factor for infection (HR=4.50, 95%CI=1.65 to 14.44) by the Cox proportional hazard model. Even after achievement of clinical remission, careful observation is needed for patients with interstitial pneumonia, more so than for those receiving high-dose glucocorticoids
    corecore