38 research outputs found

    Metastatic skull tumors: MRI features and a new conventional classification

    Get PDF
    Skull metastases are malignant bone tumors which are increasing in incidence. The objectives of this study were to characterize the MR imaging features, locations, and extent of metastatic skull tumors to determine the frequency of the symptomatic disease, and to assess patient outcomes. Between September 2002 and March 2008, 175 patients undergoing routine head MR imaging were found to have metastatic skull tumors. Contrast-enhanced study with fat suppression was used in some cases when required. Classification of metastases was simplified to three yes/no questions: first, with regard to location (either in the calvarium or in the cranial base); second, with regard to distribution within the plane of the cranial bone (either “circumscribed” meaning clearly demarcated and confined to one bone, or “diffuse” and likely to spread across a suture to another bone); and third, with regard to invasion (“intraosseous” in cranial bones only, or “invasive” spreading from the skull, either out into the scalp or inward to the dura and perhaps further in). Primary sites were breast cancer (55%), lung cancer (14%), prostate cancer (6%), malignant lymphoma (5%), and others (20%). The mean time from primary diagnosis to skull metastasis diagnosis was 71 months for cases of breast cancer, 26 months for prostate cancer, 9 months for lung cancer, and 4 months for malignant lymphoma. Calvarial circumscribed intraosseous metastases were found most frequently (27%). The patients were mainly asymptomatic. However, some patients suffered from local pain or cranial nerve palsies that harmed their quality of life. Treatment, mainly for symptomatic cases, was by local or whole-skull irradiation. Metastatic skull tumors are not rare, and most are calvarial circumscribed intraosseous tumors. MR images contribute to understanding their type, location, and multiplicity, and their relationship to the brain, cranial nerves, and dural sinuses. Radiation therapy improved the QOL of patients with neurological symptoms

    A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS

    Feasibility of Proton Beam Therapy for Chordoma and Chondrosarcoma of the Skull Base

    No full text
    We explored the general feasibility of proton beam therapy for chordoma and chondrosarcoma of the skull base. Clinical records and treatment-planning data of patients with the pathological diagnosis of chordoma or chondrosarcoma were examined. Proton beam therapy was administered for gross tumor mass as well as microscopic residual disease after surgery. The prescribed dose was determined to maximize the coverage of the target and to not exceed predefined constraints for the organs at risk. Eight cases of chordoma and eight cases of chondrosarcoma were enrolled. The median tumor volume was 40 cm3 (range, 7 to 546 cm3). The prescribed dose ranged from 50 to 70 Gy (relative biological effectiveness [RBE]), with a median of 63 Gy RBE. The median follow-up duration was 42 months (range 9 to 80 months). The overall survival rate was 100%, and the local control rate at 3 years of chordoma and chondrosarcoma were 100% and 86%. None of the patients developed radiation-induced optic neuropathy, brain stem injury, or other severe toxicity. Proton beam therapy is generally feasible for both chordoma and chondrosarcoma of the skull base, with excellent local control and survival rates

    Evaluation of Lens Doses among Medical Staff Involved in Nuclear Medicine: Current Eye Radiation Exposure among Nuclear-Medicine Staff

    No full text
    The International Commission on Radiological Protection has lowered the annual equivalent eye-lens dose to 20 mSv. Although occupational exposure can be high in nuclear medicine (NM) departments, few studies have been conducted regarding eye-lens exposure among NM staff. This study aimed to estimate the annual lens doses of staff in an NM department and identify factors contributing to lens exposure. Four nurses and six radiographers performing positron emission tomography (PET) examinations and four radiographers performing radioisotope (RI) examinations (excluding PET) were recruited for this study. A lens dosimeter was attached near the left eye to measure the 3-mm-dose equivalent; a personal dosimeter was attached to the left side of the neck to measure the 1-cm- and 70-”m-dose equivalents. Measurements were acquired over six months, and the cumulative lens dose was doubled to derive the annual dose. Correlations between the lens and personal-dosimeter doses, between the lens dose and the numbers of procedures, and between the lens dose and the amounts of PET drugs (radiopharmaceuticals) injected were examined. Wilcoxon’s signed-rank test was used to compare lens and personal-dosimeter doses. The estimated annual doses were 0.93 ± 0.13 mSv for PET nurses, 0.71 ± 0.41 mSv for PET radiographers, and 1.10 ± 0.53 mSv for RI radiographers. For PET nurses, but not for PET or RI radiographers, there was a positive correlation between the numbers of procedures and lens doses and between amounts injected and lens doses. There was a significant difference between the lens and personal-dosimeter doses of PET nurses. The use of protective measures, such as shielding, should prevent NM staff from receiving lens doses > 20 mSv/year. However, depending on the height of the protective shield, PET nurses may be unable to assess the lens dose accurately using personal dosimeters
    corecore