141 research outputs found

    Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation in the Developing Cerebellum

    Get PDF
    Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd) trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders

    Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors

    Get PDF
    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression

    Expression of Foxm1 Transcription Factor in Cardiomyocytes Is Required for Myocardial Development

    Get PDF
    Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1−/− mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1fl/f mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1fl/fl hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1fl/fl hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B1, Plk-1, nMyc and p21cip1. In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth

    Genome-Wide Search Reveals the Existence of a Limited Number of Thyroid Hormone Receptor Alpha Target Genes in Cerebellar Neurons

    Get PDF
    Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development
    corecore