26 research outputs found
A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression
SummarySignaling mechanisms underlying self-renewal of leukemic stem cells (LSCs) are poorly understood, and identifying pathways specifically active in LSCs could provide opportunities for therapeutic intervention. T-cell immunoglobin mucin-3 (TIM-3) is expressed on the surface of LSCs in many types of human acute myeloid leukemia (AML), but not on hematopoietic stem cells (HSCs). Here, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for LSC self-renewal and development of human AML. Serum Gal-9 levels were significantly elevated in AML patients and in mice xenografted with primary human AML samples, and neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML. Gal-9-mediated stimulation of TIM-3 co-activated NF-ĪŗB and Ī²-catenin signaling, pathways known to promote LSC self-renewal. These changes were further associated with leukemic transformation of a variety of pre-leukemic disorders and together highlight that targeting the TIM-3/Gal-9 autocrine loop could be a useful strategy for treating myeloid leukemias
DA-EPOCH-R combined with high-dose methotrexate in patients with newly diagnosed stage II-IV CD5-positive diffuse large B-cell lymphoma: a single-arm, open-label, phase II study
CD5-positive diffuse large B-cell lymphoma (CD5+ DLBCL) is characterized by poor prognosis and a high frequency of central nervous system relapse after standard immunochemotherapy. We conducted a phase II study to investigate the efficacy and safety of dose-adjusted (DA)- EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) combined with high-dose methotrexate (HD-MTX) in newly diagnosed patients with CD5+ DLBCL. Previously untreated patients with stage II to IV CD5+ DLBCL according to the 2008 World Health Organization classification were eligible. Four cycles of DA-EPOCH-R followed by two cycles of HD-MTX and four additional cycles of DAEPOCH- R (DA-EPOCH-R/HD-MTX) were planned as the protocol treatment. The primary end point was 2-year progression-free survival (PFS). Between September 25, 2012, and November 11, 2015, we enrolled 47 evaluable patients. Forty-five (96%) patients completed the protocol treatment. There were no deviations or violations in the DA-EPOCH-R dose levels. The complete response rate was 91%, and the overall response rate was 94%. At a median follow up of 3.1 years (range, 2.0-4.9 years), the 2- year PFS was 79% [95% confidence interval (CI): 64-88]. The 2-year overall survival was 89% (95%CI: 76-95). Toxicity included grade 4 neutropenia in 46 (98%) patients, grade 4 thrombocytopenia 12 (26%) patients, and febrile neutropenia in 31 (66%) patients. No treatment-related death was noted during the study. DA-EPOCH-R/HD-MTX might be a first-line therapy option for stage II-IV CD5+ DLBCL and warrants further investigation. (Trial registered at: UMIN-CTR: UMIN000008507.
Identification of unipotent megakaryocyte progenitors in human hematopoiesis
The developmental pathway for human megakaryocytes remains unclear, and the definition of pure unipotent megakaryocyte progenitor is still controversial. Using single-cell transcriptome analysis, we have identified a cluster of cells within immature hematopoietic stem- and progenitor-cell populations that specifically expresses genes related to the megakaryocyte lineage. We used CD41 as a positive marker to identify these cells within the CD34+CD38+IL-3RĪ±dimCD45RA- common myeloid progenitor (CMP) population. These cells lacked erythroid and granulocyte-macrophage potential but exhibited robust differentiation into the megakaryocyte lineage at a high frequency, both in vivo and in vitro. The efficiency and expansion potential of these cells exceeded those of conventional bipotent megakaryocyte/erythrocyte progenitors. Accordingly, the CD41+ CMP was defined as a unipotent megakaryocyte progenitor (MegP) that is likely to represent the major pathway for human megakaryopoiesis, independent of canonical megakaryocyte-erythroid lineage bifurcation. In the bone marrow of patients with essential thrombocythemia, the MegP population was significantly expanded in the context of a high burden of Janus kinase 2 mutations. Thus, the prospectively isolatable and functionally homogeneous human MegP will be useful for the elucidation of the mechanisms underlying normal and malignant human hematopoiesis
Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations
In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that theĀ introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS) strongly promoted humanĀ multi-lineage reconstitution. After xenotransplantation of human CD34+CD38ā cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv) mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs) in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis
Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy.
Our understanding of the mechanism of cancer dormancy is emerging, but the underlying mechanisms are not fully understood. Here we analyzed mouse xenograft tumors derived from human breast cancer tissue and the human breast cancer cell line MDA-MB-231 to identify the molecules associated with cancer dormancy. In immunohistological examination using the proliferation marker Ki-67, the tumors included both proliferating and dormant cancer cells, but the number of dormant cells was remarkably increased when they metastasized to the lung. In the gene expression analysis of the orthotopic cancer cells by a single-cell multiplex real-time quantitative reverse transcription PCR followed by flow cytometric analysis, restrained cellular proliferation was associated with downregulation of the chemokine receptor CXCR4. In the immunohistological and flow cytometric analyses, the expression level of CXCR4 in the metastasized cancer cells was decreased compared with that in the cancer cells in orthotopic tumors, although the expression level of the CXCR4 ligand CXCL12 was not reduced in the lung. In addition, the proliferation of the metastasized cancer cells was further decreased by the CXCR4 antagonist administration. In the ex vivo culture of the metastasized cancer cells, the expression level of CXCR4 was increased, and in the xenotransplantation of ex vivo cultured cancer cells, the expression level of CXCR4 was again decreased in the metastasized cancer cells in the lung. These findings indicate that CXCR4 is downregulated in metastasized breast cancer cells and implicated in their dormancy
Contribution of bone marrow-derived hematopoietic stem/progenitor cells to the generation of donor-markerāŗ cardiomyocytes in vivo.
BACKGROUND: Definite identification of the cell types and the mechanism relevant to cardiomyogenesis is essential for effective cardiac regenerative medicine. We aimed to identify the cell populations that can generate cardiomyocytes and to clarify whether generation of donor-marker(+) cardiomyocytes requires cell fusion between BM-derived cells and recipient cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: Purified BM stem/progenitor cells from green fluorescence protein (GFP) mice were transplanted into C57BL/6 mice or cyan fluorescence protein (CFP)-transgenic mice. Purified human hematopoietic stem cells (HSCs) from cord blood were transplanted into immune-compromised NOD/SCID/IL2rĪ³(null) mice. GFP(+) cells in the cardiac tissue were analyzed for the antigenecity of a cardiomyocyte by confocal microscopy following immunofluorescence staining. GFP(+) donor-derived cells, GFP(+)CFP(+) fused cells, and CFP(+) recipient-derived cells were distinguished by linear unmixing analysis. Hearts of xenogeneic recipients were evaluated for the expression of human cardiomyocyte genes by real-time quantitative polymerase chain reaction. In C57BL/6 recipients, Lin(-/low)CD45(+) hematopoietic cells generated greater number of GFP(+) cardiomyocytes than Lin(-/low)CD45(-) mesenchymal cells (37.0+/-23.9 vs 0.00+/-0.00 GFP(+) cardiomyocytes per a recipient, Pā=ā0.0095). The number of transplanted purified HSCs (Lin(-/low)Sca-1(+) or Lin(-)Sca-1(+)c-Kit(+) or CD34(-)Lin(-)Sca-1(+)c-Kit(+)) showed correlation to the number of GFP(+) cardiomyocytes (P<0.05 in each cell fraction), and the incidence of GFP(+) cardiomyocytes per injected cell dose was greatest in CD34(-)Lin(-)Sca-1(+)c-Kit(+) recipients. Of the hematopoietic progenitors, total myeloid progenitors generated greater number of GFP(+) cardiomyocytes than common lymphoid progenitors (12.8+/-10.7 vs 0.67+/-1.00 GFP(+) cardiomyocytes per a recipient, Pā=ā0.0021). In CFP recipients, all GFP(+) cardiomyocytes examined coexpressed CFP. Human troponin C and myosin heavy chain 6 transcripts were detected in the cardiac tissue of some of the xenogeneic recipients. CONCLUSIONS/SIGNIFICANCE: Our results indicate that HSCs resulted in the generation of cardiomyocytes via myeloid intermediates by fusion-dependent mechanism. The use of myeloid derivatives as donor cells could potentially allow more effective cell-based therapy for cardiac repair