2 research outputs found

    Repulsive polarons in two-dimensional Fermi gases

    Full text link
    We consider a single spin-down impurity atom interacting via an attractive, short-range potential with a spin-up Fermi sea in two dimensions (2D). Similarly to 3D, we show how the impurity can form a metastable state (the "repulsive polaron") with energy greater than that of the non-interacting impurity. Moreover, we find that the repulsive polaron can acquire a finite momentum for sufficiently weak attractive interactions. Even though the energy of the repulsive polaron can become sizeable, we argue that saturated ferromagnetism is unfavorable in 2D because of the polaron's finite lifetime and small quasiparticle weight.Comment: 6 pages, 3 figure

    Metastability and Coherence of Repulsive Polarons in a Strongly Interacting Fermi Mixture

    Full text link
    Ultracold Fermi gases with tuneable interactions represent a unique test bed to explore the many-body physics of strongly interacting quantum systems. In the past decade, experiments have investigated a wealth of intriguing phenomena, and precise measurements of ground-state properties have provided exquisite benchmarks for the development of elaborate theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions represent an exciting new frontier in the field. The realization of such systems constitutes a major challenge since a strong repulsive interaction in an atomic quantum gas implies the existence of a weakly bound molecular state, which makes the system intrinsically unstable against decay. Here, we exploit radio-frequency spectroscopy to measure the complete excitation spectrum of fermionic 40K impurities resonantly interacting with a Fermi sea of 6Li atoms. In particular, we show that a well-defined quasiparticle exists for strongly repulsive interactions. For this "repulsive polaron" we measure its energy and its lifetime against decay. We also probe its coherence properties by measuring the quasiparticle residue. The results are well described by a theoretical approach that takes into account the finite effective range of the interaction in our system. We find that a non-zero range of the order of the interparticle spacing results in a substantial lifetime increase. This major benefit for the stability of the repulsive branch opens up new perspectives for investigating novel phenomena in metastable, repulsively interacting fermion systems.Comment: 11 pages, 9 figure
    corecore