712 research outputs found

    Visualizing the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator

    Get PDF
    Superconductivity emerges from the cuprate antiferromagnetic Mott state with hole doping. The resulting electronic structure is not understood, although changes in the state of oxygen atoms appear paramount. Hole doping first destroys the Mott state yielding a weak insulator where electrons localize only at low temperatures without a full energy gap. At higher doping, the 'pseudogap', a weakly conducting state with an anisotropic energy gap and intra-unit-cell breaking of 90\degree-rotational (C4v) symmetry appears. However, a direct visualization of the emergence of these phenomena with increasing hole density has never been achieved. Here we report atomic-scale imaging of electronic structure evolution from the weak-insulator through the emergence of the pseudogap to the superconducting state in Ca2-xNaxCuO2Cl2. The spectral signature of the pseudogap emerges at lowest doping from a weakly insulating but C4v-symmetric matrix exhibiting a distinct spectral shape. At slightly higher hole-density, nanoscale regions exhibiting pseudogap spectra and 180\degree-rotational (C2v) symmetry form unidirectional clusters within the C4v-symmetric matrix. Thus, hole-doping proceeds by the appearance of nanoscale clusters of localized holes within which the broken-symmetry pseudogap state is stabilized. A fundamentally two-component electronic structure11 then exists in Ca2-xNaxCuO2Cl2 until the C2v-symmetric clusters touch at higher doping, and the long-range superconductivity appears.Comment: See the Nature Physics website for the published version available at http://dx.doi.org/10.1038/Nphys232

    Magnetic Phase Diagram of the Hole-doped Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2} Cuprate Superconductor

    Full text link
    We report on the magnetic phase diagram of a hole-doped cuprate Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2}, which is free from buckling of CuO2_2 planes, determined by muon spin rotation and relaxation. It is characterized by a quasi-static spin glass-like phase over a range of sodium concentration (0.05x0.120.05\leq x\leq 0.12), which is held between long range antiferromagnetic (AF) phase (x0.02x\leq 0.02) and superconducting phase where the system is non-magnetic for x0.15x\geq 0.15. The obtained phase diagram qualitatively agrees well with that commonly found for hole-doped high-\tc cuprates, strongly suggesting that the incomplete suppression of the AF order for x>0.02x>0.02 is an essential feature of the hole-doped cuprates.Comment: 5 pages, submitted to Phys. Rev. Let

    Charge dynamics of Ca_{2-x}Na_{x}CuO_{2}Cl_{2} as a correlated electron system with the ideal tetragonal lattice

    Full text link
    We report the reflectivity and the resistivity measurement of Ca_{2-x}Na_{x}CuO_{2}Cl_{2} (CNCOC), which has a single-CuO2-plane lattice with no orthorhombic distortion. The doping dependence of the in-plane optical conductivity spectra for CNCOC is qualitatively the same to those of other cuprates, but a slight difference between CNCOC and LSCO, i.e., the absence of the 1.5 eV peak in CNCOC, can be attributed to the smaller charge-stripe instability in CNCOC. The temperature dependence of the optical onductivity spectra of CNCOC has been analyzed both by the two-component model (Drude+Lorentzian) and by the one-component model (extended-Drude analysis). The latter analysis gives a universal trend of the scattering rate Gamma(omega) with doping. It was also found that Gamma(omega) shows a saturation behavior at high frequencies, whose origin is the same as that of resistivity saturation at high temperatures.Comment: 8 pages, 11 figures, to be published in Phys. Rev.

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig

    Saddle-point van Hove singularity and the phase diagram of high-Tc cuprates

    Full text link
    We examine the generic phase behavior of high-Tc cuprate superconductors in terms a universal van Hove singularity in the strongly overdoped region. Using a rigid ARPES-derived dispersion we solve the BCS gap equation and show that the pairing interaction or pairing energy cutoff must be a rapidly declining function of doping. This result is prejudicial to a phonon-based pairing interaction and more consistent with a magnetic or magnetically enhanced interaction.Comment: 5 pages, 2 figures, submitted to Physical Review
    corecore