489 research outputs found
Spectroscopic Fingerprint of Phase-Incoherent Superconductivity in the Cuprate Pseudogap State
A possible explanation for the existence of the cuprate "pseudogap" state is
that it is a d-wave superconductor without quantum phase rigidity. Transport
and thermodynamic studies provide compelling evidence that supports this
proposal, but few spectroscopic explorations of it have been made. One
spectroscopic signature of d-wave superconductivity is the particle-hole
symmetric "octet" of dispersive Bogoliubov quasiparticle interference
modulations. Here we report on this octet's evolution from low temperatures to
well into the underdoped pseudogap regime. No pronounced changes occur in the
octet phenomenology at the superconductor's critical temperature Tc, and it
survives up to at least temperature T ~ 1.5Tc. In the pseudogap regime, we
observe the detailed phenomenology that was theoretically predicted for
quasiparticle interference in a phase-incoherent d-wave superconductor. Thus,
our results not only provide spectroscopic evidence to confirm and extend the
transport and thermodynamics studies, but they also open the way for
spectroscopic explorations of phase fluctuation rates, their effects on the
Fermi arc, and the fundamental source of the phase fluctuations that suppress
superconductivity in underdoped cuprates.Comment: 27 pages, 12 figure
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
The nature of the pseudogap phase is a central problem in the quest to
understand high-Tc cuprate superconductors. A fundamental question is what
symmetries are broken when that phase sets in below a temperature T*. There is
evidence from both polarized neutron diffraction and polar Kerr effect
measurements that time- reversal symmetry is broken, but at temperatures that
differ significantly. Broken rotational symmetry was detected by both
resistivity and inelastic neutron scattering at low doping and by scanning
tunnelling spectroscopy at low temperature, but with no clear connection to T*.
Here we report the observation of a large in-plane anisotropy of the Nernst
effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase
diagram. We show that the CuO chains of the orthorhombic lattice are not
responsible for this anisotropy, which is therefore an intrinsic property of
the CuO2 planes. We conclude that the pseudogap phase is an electronic state
which strongly breaks four-fold rotational symmetry. This narrows the range of
possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
Low temperature thermal conductivity in a d-wave superconductor with coexisting charge order: Effect of self-consistent disorder and vertex corrections
Given the experimental evidence of charge order in the underdoped cuprate
superconductors, we consider the effect of coexisting charge order on
low-temperature thermal transport in a d-wave superconductor. Using a
phenomenological Hamiltonian that describes a two-dimensional system in the
presence of a Q=(\pi,0) charge density wave and d-wave superconducting order,
and including the effects of weak impurity scattering, we compute the
self-energy of the quasiparticles within the self-consistent Born
approximation, and calculate the zero-temperature thermal conductivity using
linear response formalism. We find that vertex corrections within the ladder
approximation do not significantly modify the bare-bubble result that was
previously calculated. However, self-consistent treatment of the disorder does
modify the charge-order-dependence of the thermal conductivity tensor, in that
the magnitude of charge order required for the system to become effectively
gapped is renormalized, generally to a smaller value.Comment: 19 pages, 15 figure
Universality of pseudogap and emergent order in lightly doped Mott insulators
It is widely believed that high-temperature superconductivity in the cuprates
emerges from doped Mott insulators. The physics of the parent state seems
deceivingly simple: The hopping of the electrons from site to site is
prohibited because their on-site Coulomb repulsion U is larger than the kinetic
energy gain t. When doping these materials by inserting a small percentage of
extra carriers, the electrons become mobile but the strong correlations from
the Mott state are thought to survive; inhomogeneous electronic order, a
mysterious pseudogap and, eventually, superconductivity appear. How the
insertion of dopant atoms drives this evolution is not known, nor whether these
phenomena are mere distractions specific to hole-doped cuprates or represent
the genuine physics of doped Mott insulators. Here, we visualize the evolution
of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2
Mott insulator like the cuprates, but is chemically radically different. Using
spectroscopic-imaging STM, we find that for doping concentration of x=5%, an
inhomogeneous, phase separated state emerges, with the nucleation of pseudogap
puddles around clusters of dopant atoms. Within these puddles, we observe the
same glassy electronic order that is so iconic for the underdoped cuprates.
Further, we illuminate the genesis of this state using the unique possibility
to localize dopant atoms on topographs in these samples. At low doping, we find
evidence for much deeper trapping of carriers compared to the cuprates. This
leads to fully gapped spectra with the chemical potential at mid-gap, which
abruptly collapse at a threshold of around 4%. Our results clarify the melting
of the Mott state, and establish phase separation and electronic order as
generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates
on figures and tex
Uridine Metabolism in the Goldfish Retina During Optic Nerve Regeneration: Whole Retina Studies
Accumulation of radioactivity from [ 3 H]uridine in incubations of whole goldfish retinas is increased in the ipsilateral retina during a period of regeneration that follows unilateral optic nerve crush. Brief incubations to investigate the nature of enhanced labeling of the acid-soluble fraction showed a peak uptake 4 days following crush, with a gradual decrease to control levels by 21 days following crush. That nucleoside uptake may not mediate the effect is supported by the observation that the rate of uptake of 5′-deoxyadenosine, a nonmetabolizable nucleoside analog, is the same in post-crush (PC) and normal (N) retinal incubations. Following brief incubations of PC and N retinas with [ 3 H]uridine, there is enhanced labeling in PC retinas relative to N retinas of recovered UMP, UDP, UTP, and uridine nucleotide sugars, whereas recovery of labeled uridine itself is slightly decreased. The results suggest that the increased accumulation of radioactivity in PC retinas following incubation with uridine reflects an increase in the activities of retinal uridine kinase and uridine nucleotide kinases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65630/1/j.1471-4159.1981.tb01713.x.pd
Visualizing the microscopic coexistence of spin density wave and superconductivity in underdoped NaFe1-xCoxAs
Although the origin of high temperature superconductivity in the iron
pnictides is still under debate, it is widely believed that magnetic
interactions or fluctuations play an important role in triggering Cooper
pairing. Because of the relevance of magnetism to pairing, the question of
whether long range spin magnetic order can coexist with superconductivity
microscopically has attracted strong interests. The available experimental
methods used to answer this question are either bulk probes or local ones
without control of probing position, thus the answers range from mutual
exclusion to homogeneous coexistence. To definitively answer this question,
here we use scanning tunneling microscopy to investigate the local electronic
structure of an underdoped NaFe1-xCoxAs near the spin density wave (SDW) and
superconducting (SC) phase boundary. Spatially resolved spectroscopy directly
reveal both the SDW and SC gap features at the same atomic location, providing
compelling evidence for the microscopic coexistence of the two phases. The
strengths of the SDW and SC features are shown to anti correlate with each
other, indicating the competition of the two orders. The microscopic
coexistence clearly indicates that Cooper pairing occurs when portions of the
Fermi surface (FS) are already gapped by the SDW order. The regime TC < T <
TSDW thus show a strong resemblance to the pseudogap phase of the cuprates
where growing experimental evidences suggest a FS reconstruction due to certain
density wave order. In this phase of the pnictides, the residual FS has a
favorable topology for magnetically mediated pairing when the ordering moment
of the SDW is small.Comment: 18 pages, 4 figure
Pseudogap temperature as a Widom line in doped Mott insulators
The pseudogap refers to an enigmatic state of matter with unusual physical
properties found below a characteristic temperature in hole-doped
high-temperature superconductors. Determining is critical for
understanding this state. Here we study the simplest model of correlated
electron systems, the Hubbard model, with cluster dynamical mean-field theory
to find out whether the pseudogap can occur solely because of strong coupling
physics and short nonlocal correlations. We find that the pseudogap
characteristic temperature is a sharp crossover between different
dynamical regimes along a line of thermodynamic anomalies that appears above a
first-order phase transition, the Widom line. The Widom line emanating from the
critical endpoint of a first-order transition is thus the organizing principle
for the pseudogap phase diagram of the cuprates. No additional broken symmetry
is necessary to explain the phenomenon. Broken symmetry states appear in the
pseudogap and not the other way around.Comment: 6 pages, 4 figures and supplementary information; published versio
- …