280 research outputs found

    SIZE EFFECTS ON MAGNETIC PROPERTY AND CRYSTAL STRUCTURE OF MN3O4 NANOPARTICLES IN MESOPOROUS SILICA

    Get PDF
    Mn3O4 nanoparticles with particle sizes of 7.8, 11.4, and 18.3 nm were synthesized in the pores of mesoporous silica, and their crystal structure and magnetic properties were investigated. The powder X-ray diffractions at room temperature indicated that the crystal structural symmetry was the same as that for bulk crystal, and the lattice constants deviated from those for bulk crystal, which depended on the particle size. In addition, compared with the bulk crystal, the Jahn-Teller distortion for the nanoparticles was suppressed and decreased with decreasing the particle size. The coercive field for 7.8 nm was rather smaller than those for 11.4 and 18.3 nm. The nanoparticles with 11.4 and 18.3 nm exhibited pronounced three kinds of magnetic transition temperatures, whereas the susceptibility for 7.8 nm indicated the existence of two transition temperatures. These experimental results suggested that the Mn3O4 nanoparticles have a strong correlation between crystallographic structure and magnetic property, and the characteristic magnetic size effects are attributed to the reduction of Jahn-Teller distortion.The 21st International Conference on Magnetism (ICM2018), July 15-20, 2018, San Francisco, US

    Emergence of Micronuclei and Their Effects on the Fate of Cells under Replication Stress

    Get PDF
    The presence of micronuclei in mammalian cells is related to several mutagenetic stresses. In order to understand how micronuclei emerge, behave in cells, and affect cell fate, we performed extensive time-lapse microscopy of HeLa H2B-GFP cells in the presence of hydroxyurea at low concentration. Micronuclei formed after mitosis from lagging chromatids or chromatin bridges between anaphase chromosomes and were stably maintained in the cells for up to one cell cycle. Nuclear buds also formed from chromatin bridges or during interphase. If the micronuclei-bearing cells entered mitosis, they either produced daughter cells without micronuclei or, more frequently, produced cells with additional micronuclei. Low concentrations of hydroxyurea efficiently induced multipolar mitosis, which generated lagging chromatids or chromatin bridges, and also generated multinuclear cells that were tightly linked to apoptosis. We found that the presence of micronuclei is related to apoptosis but not to multipolar mitosis. Furthermore, the structural heterogeneity among micronuclei, with respect to chromatin condensation or the presence of lamin B, derived from the mechanism of micronuclei formation. Our study reinforces the notion that micronucleation has important implications in the genomic plasticity of tumor cells

    Inhibition of the mitochondria-shaping protein Opa1 restores sensitivity to Gefitinib in a lung adenocarcinomaresistant cell line

    Get PDF
    Drug resistance limits the efficacy of chemotherapy and targeted cancer treatments, calling for the identification of druggable targets to overcome it. Here we show that the mitochondria-shaping protein Opa1 participates in resistance against the tyrosine kinase inhibitor gefitinib in a lung adenocarcinoma cell line. Respiratory profiling revealed that oxidative metabolism was increased in this gefitinib-resistant lung cancer cell line. Accordingly, resistant cells depended on mitochondrial ATP generation, and their mitochondria were elongated with narrower cristae. In the resistant cells, levels of Opa1 were increased and its genetic or pharmacological inhibition reverted the mitochondrial morphology changes and sensitized them to gefitinib-induced cytochrome c release and apoptosis. In vivo, the size of gefitinib-resistant lung orthotopic tumors was reduced when gefitinib was combined with the specific Opa1 inhibitor MYLS22. The combo gefitinib-MYLS22 treatment increased tumor apoptosis and reduced its proliferation. Thus, the mitochondrial protein Opa1 participates in gefitinib resistance and can be targeted to overcome it

    Characteristic Size Effects on the Crystallographic Structure and Magnetic Properties of RMnO3 (R = Eu, Gd, Tb, Dy) Nanoparticles

    Get PDF
    We synthesized lanthanoid manganese oxide RMnO3 (R = Eu, Gd, Tb, and Dy) nanoparticles with particle sizes ranging from approximately 6.5 to 23 nm and investigated both their crystal structure and magnetic properties. The RMnO3 nanoparticles showed a strong correlation between crystal structure and magnetic properties, and particle size effects on these properties vary owing to the different atomic radii of the lanthanoid ions. The magnetic properties of all of the nanoparticles exhibited significant changes as the lattice constants changed at characteristic sizes that depend on the lanthanoid ionic radius; however, the characteristic size for magnetic properties corresponded to the magnitude of the orthorhombic distortion b/a = 1.10, regardless of the lanthanoid ionic radius. With decreasing particle size, EuMnO3, GdMnO3, and TbMnO3 nanoparticles induced tensile strain of MnO6 octahedra, whereas compressive strain occurred in DyMnO3 nanoparticles. The deformation of MnO6 octahedra changed the magnetic interactions, resulting in changes in the magnetic properties. As the particle size decreased, for R = Eu, Gd, and Tb, the magnetic properties, such as transition temperature, coercive field, and blocking temperature, decreased; conversely, these values increased in DyMnO3. The distortion of the unit cell induced changes in the magnetic ordering state due to decreasing particle size
    • …
    corecore