25 research outputs found

    極域成層圏・上部対流圏の雲変動の力学的理解

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Current status and future plan of the Program of the Antarctic Syowa MST/IS radar (PANSY)

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [S] Future plan of Antarctic research: Towards phase X of the Japanese Antarctic Research Project (2022-2028) and beyond, Tue. 3 Dec. / 2F Auditorium, National Institute of Polar Researc

    LODEWAVE: LOng-Duration balloon Experiment of gravity WAVE over Antarctica

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [S] Future plan of Antarctic research: Towards phase X of the Japanese Antarctic Research Project (2022-2028) and beyond, Tue. 3 Dec. / Entrance Hall (1st floor) at National Institute of Polar Research (NIPR

    PANSYレーダーおよびMFレーダーによる昭和基地上空の中間圏領域エコー比較

    Get PDF
    第6回極域科学シンポジウム分野横断型セッション:[IM] 横断 中層大気・熱圏11月17日(火) 統計数理研究所 セミナー室2(D304

    Classification of Polar-Night Jet Oscillations and Their Relationship to Fast and Slow Variations in a Global Mechanistic Circulation Model of the Stratosphere and Troposphere

    Get PDF
    Polar-night jet oscillation (PJO), which is a low-frequency intraseasonal oscillatory variation in the winter stratosphere, is analyzed statistically with a 14 000-yr-long dataset obtained with an idealized global mechanistic circulation model of the stratosphere and troposphere. After performing an empirical orthogonal function (EOF) analysis on the low-pass-filtered time series of the northern polar temperature, 10 647 PJO events are identified and classified into four groups. About 80% of them are two groups of warm events while the rest are two groups of cold events, which are newly identified variations with opposite sign from the warm events by the same EOF analysis. All of them show slow downward propagations of a positive or negative temperature anomaly, with a relatively short or long lifetime. Composite analysis with such a large number of samples shows that each group has its own typical relationship to unfiltered relatively fast variations in the polar stratosphere known as stratospheric sudden warming and polar vortex intensification and to the slow variation in the troposphere known as the Arctic Oscillation. Statistically significant evidence of the downward dynamical influence of PJO on the surface is obtained for a group of warm events with a longer lifetim

    Quasi-12h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6°E, 69.0°S)

    Get PDF
    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and −0.3 m s−1, respectively. Under the working hypothesis that such disturbances are attributable to inertia–gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia–gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia–gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia–gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia–gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia–gravity waves originate in the upper stratosphere
    corecore