4,431 research outputs found
Surprising relations between parametric level correlations and fidelity decay
Unexpected relations between fidelity decay and cross form--factor, i.e.,
parametric level correlations in the time domain are found both by a heuristic
argument and by comparing exact results, using supersymmetry techniques, in the
framework of random matrix theory. A power law decay near Heisenberg time, as a
function of the relevant parameter, is shown to be at the root of revivals
recently discovered for fidelity decay. For cross form--factors the revivals
are illustrated by a numerical study of a multiply kicked Ising spin chain.Comment: 4 pages 3 figure
Oscillatory decay of a two-component Bose-Einstein condensate
We study the decay of a two-component Bose-Einstein condensate with negative
effective interaction energy. With a decreasing atom number due to losses, the
atom-atom interaction becomes less important and the system undergoes a
transition from a bistable Josephson regime to the monostable Rabi regime,
displaying oscillations in phase and number. We study the equations of motion
and derive an analytical expression for the oscillation amplitude. A quantum
trajectory simulation reveals that the classical description fails for low
emission rates, as expected from analytical considerations. Observation of the
proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue
Exact diagonalisation of 1-d interacting spinless Fermions
We acquire a method of constructing an infinite set of exact eigenfunctions
of 1--d interacting spinless Fermionic systems. Creation and annihilation
operators for the interacting system are found and thereby the many--body
Hamiltonian is diagonalised. The formalism is applied to several examples. One
example is the theory of Jack polynomials. For the Calogero-Moser-Sutherland
Hamiltonian a direct proof is given that the asymptotic Bethe Ansatz is
correct.Comment: 33 page
Supersymmetric Extensions of Calogero--Moser--Sutherland like Models: Construction and Some Solutions
We introduce a new class of models for interacting particles. Our
construction is based on Jacobians for the radial coordinates on certain
superspaces. The resulting models contain two parameters determining the
strengths of the interactions. This extends and generalizes the models of the
Calogero--Moser--Sutherland type for interacting particles in ordinary spaces.
The latter ones are included in our models as special cases. Using results
which we obtained previously for spherical functions in superspaces, we obtain
various properties and some explicit forms for the solutions. We present
physical interpretations. Our models involve two kinds of interacting
particles. One of the models can be viewed as describing interacting electrons
in a lower and upper band of a one--dimensional semiconductor. Another model is
quasi--two--dimensional. Two kinds of particles are confined to two different
spatial directions, the interaction contains dipole--dipole or tensor forces.Comment: 21 pages, 4 figure
Torsion Degrees of Freedom in the Regge Calculus as Dislocations on the Simplicial Lattice
Using the notion of a general conical defect, the Regge Calculus is
generalized by allowing for dislocations on the simplicial lattice in addition
to the usual disclinations. Since disclinations and dislocations correspond to
curvature and torsion singularities, respectively, the method we propose
provides a natural way of discretizing gravitational theories with torsion
degrees of freedom like the Einstein-Cartan theory. A discrete version of the
Einstein-Cartan action is given and field equations are derived, demanding
stationarity of the action with respect to the discrete variables of the
theory
First principles calculation of structural and magnetic properties for Fe monolayers and bilayers on W(110)
Structure optimizations were performed for 1 and 2 monolayers (ML) of Fe on a
5 ML W(110) substrate employing the all-electron full-potential linearized
augmented plane-wave (FP-LAPW) method. The magnetic moments were also obtained
for the converged and optimized structures. We find significant contractions
( 10 %) for both the Fe-W and the neighboring Fe-Fe interlayer spacings
compared to the corresponding bulk W-W and Fe-Fe interlayer spacings. Compared
to the Fe bcc bulk moment of 2.2 , the magnetic moment for the surface
layer of Fe is enhanced (i) by 15% to 2.54 for 1 ML Fe/5 ML W(110), and
(ii) by 29% to 2.84 for 2 ML Fe/5 ML W(110). The inner Fe layer for 2
ML Fe/5 ML W(110) has a bulk-like moment of 2.3 . These results agree
well with previous experimental data
Last-century increases in intrinsic water-use efficiency of grassland communities have occurred over a wide range of vegetation composition, nutrient inputs and soil pH
Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as
phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P , 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (DWi). However, soil pH (P , 0.05), species richness (P , 0.01), and percentage grass content (P , 0.01) were significantly related to DWi
. Grass-dominated, species-poor plots on acidic soils showed the largest DWi (+14.7 mmol mol21).
The DWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root
growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a
wide range of nutrient inputs, soil pH, and plant community compositions during the last century
A Multiplicity Census of Young Stars in Chamaeleon I
We present the results of a multiplicity survey of 126 stars spanning ~0.1-3
solar masses in the ~2-Myr-old Chamaeleon I star-forming region, based on
adaptive optics imaging with the ESO Very Large Telescope. Our observations
have revealed 30 binaries and 6 triples, of which 19 and 4, respectively, are
new discoveries. The overall multiplicity fraction we find for Cha I (~30%) is
similar to those reported for other dispersed young associations, but
significantly higher than seen in denser clusters and the field, for comparable
samples. Both the frequency and the maximum separation of Cha I binaries
decline with decreasing mass, while the mass ratios approach unity; conversely,
tighter pairs are more likely to be equal mass. We confirm that brown dwarf
companions to stars are rare, even at young ages at wide separations. Based on
follow-up spectroscopy of two low-mass substellar companion candidates, we
conclude that both are likely background stars. The overall multiplicity
fraction in Cha I is in rough agreement with numerical simulations of cloud
collapse and fragmentation, but its observed mass dependence is less steep than
predicted. The paucity of higher-order multiples, in particular, provides a
stringent constraint on the simulations, and seems to indicate a low level of
turbulence in the prestellar cores in Cha I.Comment: Accepted for publication in Ap
Forces Induced by Non-Equilibrium Fluctuations: The Soret-Casimir Effect
The notion of fluctuation-induced forces is generalized to the cases where
the fluctuations have nonequilibrium origin. It is shown that a net force is
exerted on a single flat plate that restricts scale-free fluctuations of a
scalar field in a temperature gradient. This force tends to push the object to
the colder regions, which is a manifestation of thermophoresis or the Soret
effect. In the classic two-plate geometry, it is shown that the Casimir forces
exerted on the two plates differ from each other, and thus the Newton's third
law is violated.Comment: 8 pages, 5 postscript figures, uses (old) RevTe
Norm-dependent Random Matrix Ensembles in External Field and Supersymmetry
The class of norm-dependent Random Matrix Ensembles is studied in the
presence of an external field. The probability density in those ensembles
depends on the trace of the squared random matrices, but is otherwise
arbitrary. An exact mapping to superspace is performed. A transformation
formula is derived which gives the probability density in superspace as a
single integral over the probability density in ordinary space. This is done
for orthogonal, unitary and symplectic symmetry. In the case of unitary
symmetry, some explicit results for the correlation functions are derived.Comment: 19 page
- …