1,836 research outputs found
A Model for the Stray Light Contamination of the UVCS Instrument on SOHO
We present a detailed model of stray-light suppression in the spectrometer
channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO
spacecraft. The control of diffracted and scattered stray light from the bright
solar disk is one of the most important tasks of a coronagraph. We compute the
fractions of light that diffract past the UVCS external occulter and
non-specularly pass into the spectrometer slit. The diffracted component of the
stray light depends on the finite aperture of the primary mirror and on its
figure. The amount of non-specular scattering depends mainly on the
micro-roughness of the mirror. For reasonable choices of these quantities, the
modeled stray-light fraction agrees well with measurements of stray light made
both in the laboratory and during the UVCS mission. The models were constructed
for the bright H I Lyman alpha emission line, but they are applicable to other
spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres
Coronal heating distribution due to low-frequency wave-driven turbulence
The heating of the lower solar corona is examined using numerical simulations
and theoretical models of magnetohydrodynamic turbulence in open magnetic
regions. A turbulent energy cascade to small length scales perpendicular to the
mean magnetic field can be sustained by driving with low-frequency Alfven waves
reflected from mean density and magnetic field gradients. This mechanism
deposits energy efficiently in the lower corona, and we show that the spatial
distribution of the heating is determined by the mean density through the
Alfven speed profile. This provides a robust heating mechanism that can explain
observed high coronal temperatures and accounts for the significant heating
(per unit volume) distribution below two solar radius needed in models of the
origin of the solar wind. The obtained heating per unit mass on the other hand
is much more extended indicating that the heating on a per particle basis
persists throughout all the lower coronal region considered here.Comment: 19 pages, 5 figures. Accepted for publication in Ap
Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona
We present a detailed analysis of oxygen ion velocity distributions in the
extended solar corona, based on observations made with the Ultraviolet
Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at
solar minimum are known to exhibit broad line widths and unusual intensity
ratios of the O VI 1032, 1037 emission line doublet. The traditional
interpretation of these features has been that oxygen ions have a strong
temperature anisotropy, with the temperature perpendicular to the magnetic
field being much larger than the temperature parallel to the field. However,
recent work by Raouafi and Solanki suggested that it may be possible to model
the observations using an isotropic velocity distribution. In this paper we
analyze an expanded data set to show that the original interpretation of an
anisotropic distribution is the only one that is fully consistent with the
observations. It is necessary to search the full range of ion plasma parameters
to determine the values with the highest probability of agreement with the UVCS
data. The derived ion outflow speeds and perpendicular kinetic temperatures are
consistent with earlier results, and there continues to be strong evidence for
preferential ion heating and acceleration with respect to hydrogen. At
heliocentric heights above 2.1 solar radii, every UVCS data point is more
consistent with an anisotropic distribution than with an isotropic
distribution. At heights above 3 solar radii, the exact probability of isotropy
depends on the electron density chosen to simulate the line-of-sight
distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May
20, 2008
Noncollinear magnetic ordering in small Chromium Clusters
We investigate noncollinear effects in antiferromagnetically coupled clusters
using the general, rotationally invariant form of local spin-density theory.
The coupling to the electronic degrees of freedom is treated with relativistic
non-local pseudopotentials and the ionic structure is optimized by Monte-Carlo
techniques. We find that small chromium clusters (N \le 13) strongly favor
noncollinear configurations of their local magnetic moments due to frustration.
This effect is associated with a significantly lower total magnetization of the
noncollinear ground states, ameliorating the disagreement between Stern-Gerlach
measurements and previous collinear calculations for Cr_{12} and Cr_{13}. Our
results further suggest that the trend to noncollinear configurations might be
a feature common to most antiferromagnetic clusters.Comment: 9 pages, RevTeX plus .eps/.ps figure
Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction.
Many proteins involved in eukaryotic phosphate homeostasis are regulated by SPX domains. In yeast, the vacuolar transporter chaperone (VTC) complex contains two such domains, but mechanistic details of its regulation are not well understood. Here, we show at the atomic level how inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex. Vtc2 inhibits the catalytically active VTC subunit Vtc4 by homotypic SPX-SPX interactions via the conserved helix α1 and the previously undescribed helix α7. Binding of inositol pyrophosphates to Vtc2 abrogates this interaction, thus activating the VTC complex. Accordingly, VTC activation is also achieved by site-specific point mutations that disrupt the SPX-SPX interface. Structural data suggest that ligand binding induces reorientation of helix α1 and exposes the modifiable helix α7, which might facilitate its post-translational modification in vivo. The variable composition of these regions within the SPX domain family might contribute to the diversified SPX functions in eukaryotic phosphate homeostasis
Overcoming Postcommunist Labour Weakness: Attritional and Enabling Effects of MNCs in Central and Eastern Europe
Based on micro-level analysis of the developments in the steel sector in Poland, Romania and Slovakia, this paper examines the effects of multinational corporations (MNCs) on labour unions in Central and Eastern Europe. It makes a three-fold argument. First, it shows that union weakness can be attributed to unions’ strategies during the restructuring and privatization processes of postcommunist transition. Consequently, tactics used for union regeneration in the West are less applicable to CEE. Rather, the overcoming of postcommunist legacy is linked to the power of transnational capital. Through attritional and enabling effects, ownership by MNCs forces the unions to focus their efforts on articulating workers’ interests. The paper examines the emerging system of industrial relations in the sector and explores the development of the capabilities needed to overcome postcommunist legacies
The Capaciousness of No: Affective Refusals as Literacy Practices
© 2020 The Authors. Reading Research Quarterly published by Wiley Periodicals, Inc. on behalf of International Literacy Association The authors considered the capacious feeling that emerges from saying no to literacy practices, and the affective potential of saying no as a literacy practice. The authors highlight the affective possibilities of saying no to normative understandings of literacy, thinking with a series of vignettes in which children, young people, and teachers refused literacy practices in different ways. The authors use the term capacious to signal possibilities that are as yet unthought: a sense of broadening and opening out through enacting no. The authors examined how attention to affect ruptures humanist logics that inform normative approaches to literacy. Through attention to nonconscious, noncognitive, and transindividual bodily forces and capacities, affect deprivileges the human as the sole agent in an interaction, thus disrupting measurements of who counts as a literate subject and what counts as a literacy event. No is an affective moment. It can signal a pushback, an absence, or a silence. As a theoretical and methodological way of thinking/feeling with literacy, affect proposes problems rather than solutions, countering solution-focused research in which the resistance is to be overcome, co-opted, or solved. Affect operates as a crack or a chink, a tiny ripple, a barely perceivable gesture, that can persist and, in doing so, hold open the possibility for alternative futures
- …