161 research outputs found

    Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination

    Get PDF
    DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the novel MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts

    Development of a reverse genetics system for Toscana virus (lineage A)

    Get PDF
    Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies

    Netrin-1 Peptide Is a Chemorepellent in \u3cem\u3eTetrahymena thermophila\u3c/em\u3e

    Get PDF
    Netrin-1 is a highly conserved, pleiotropic signaling molecule that can serve as a neuronal chemorepellent during vertebrate development. In vertebrates, chemorepellent signaling is mediated through the tyrosine kinase, src-1, and the tyrosine phosphatase, shp-2. Tetrahymena thermophila has been used as a model system for chemorepellent signaling because its avoidance response is easily characterized under a light microscope. Our experiments showed that netrin-1 peptide is a chemorepellent in T. thermophila at micromolar concentrations. T. thermophila adapts to netrin-1 over a time course of about 10 minutes. Netrin-adapted cells still avoid GTP, PACAP-38, and nociceptin, suggesting that netrin does not use the same signaling machinery as any of these other repellents. Avoidance of netrin-1 peptide was effectively eliminated by the addition of the tyrosine kinase inhibitor, genistein, to the assay buffer; however, immunostaining using an anti-phosphotyrosine antibody showed similar fluorescence levels in control and netrin-1 exposed cells, suggesting that tyrosine phosphorylation i s not required for signaling to occur. In addition, ELISA indicates that a netrin-like peptide is present in both whole cell extract and secreted protein obtained from Tetrahymena thermophila. Further study will be required in order to fully elucidate the signaling mechanism of netrin-1 peptide in this organism

    Unusual cause of exercise-induced ventricular fibrillation in a well-trained adult endurance athlete: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The diseases responsible for sudden deaths in athletes differ considerably with regard to age. In young athletes, congenital malformations of the heart and/or vascular system cause the majority of deaths and can only be detected noninvasively by complex diagnostics. In contrast, in older athletes who die suddenly, atherosclerotic disease of the coronary arteries is mostly found. Reports of congenital coronary anomalies as a cause of sudden death in older athletes are rare.</p> <p>Case presentation</p> <p>A 48-year-old man who was a well-trained, long-distance runner collapsed at the finish of a half marathon because of a myocardial infarction with ventricular fibrillation. Coronary angiography showed an anomalous origin of the right coronary artery from the left sinus of Valsalva with minimal wall alterations. Multislice computed tomography of the coronary arteries confirmed these findings. Cardiomagnetic resonance imaging demonstrated a mild hypokinesia of the basal right- and left-ventricular posterior wall. An electrophysiological study showed an inducible temporary polymorphic ventricular tachycardia and an inducible ventricular fibrillation. The athlete was subsequently treated by acetylsalicylic acid 100 mg (0-1-0), bisoprolol 2.5 mg (1-0-0) and atorvastatin 10 mg (0-0-1) and was instructed to keep his training intensity under the 'individual anaerobic threshold'. Intense and long-lasting exercise under extreme environmental conditions, particularly heat, should also be avoided.</p> <p>Conclusion</p> <p>This case report presents a coronary anomaly as the most likely reason for an exercise-induced myocardial infarction with ventricular fibrillation in a well-trained 48-year-old endurance athlete. Therefore, coronary anomalies have also to be considered as a possible cause of cardiac problems in older athletes.</p

    Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    Full text link
    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime
    corecore