4 research outputs found

    Discovery of the Fastest Early Optical Emission from Overluminous SN Ia 2020hvf: A Thermonuclear Explosion within a Dense Circumstellar Environment

    Get PDF
    Ia型超新星の爆発直後の閃光を捉えることに成功 --特異な爆発に至る恒星進化の謎に迫る--. 京都大学プレスリリース. 2021-12-10.In this Letter we report a discovery of a prominent flash of a peculiar overluminous Type Ia supernova, SN 2020hvf, in about 5 hr of the supernova explosion by the first wide-field mosaic CMOS sensor imager, the Tomo-e Gozen Camera. The fast evolution of the early flash was captured by intensive intranight observations via the Tomo-e Gozen high-cadence survey. Numerical simulations show that such a prominent and fast early emission is most likely generated from an interaction between 0.01 M⊙ circumstellar material (CSM) extending to a distance of ∼10¹³ cm and supernova ejecta soon after the explosion, indicating a confined dense CSM formation at the final evolution stage of the progenitor of SN 2020hvf. Based on the CSM–ejecta interaction-induced early flash, the overluminous light curve, and the high ejecta velocity of SN 2020hvf, we suggest that the SN 2020hvf may originate from a thermonuclear explosion of a super-Chandrasekhar-mass white dwarf (“super-MCh WD”). Systematical investigations on explosion mechanisms and hydrodynamic simulations of the super-MCh WD explosion are required to further test the suggested scenario and understand the progenitor of this peculiar supernova

    Bridging between Type IIb and Ib Supernovae: SN IIb 2022crv with a Very Thin Hydrogen Envelope

    No full text
    We present optical, near-infrared, and radio observations of supernova (SN) SN IIb 2022crv. We show that it retained a very thin H envelope and transitioned from an SN IIb to an SN Ib; prominent H α seen in the pre-maximum phase diminishes toward the post-maximum phase, while He i lines show increasing strength. SYNAPPS modeling of the early spectra of SN 2022crv suggests that the absorption feature at 6200 Å is explained by a substantial contribution of H α together with Si ii , as is also supported by the velocity evolution of H α . The light-curve evolution is consistent with the canonical stripped-envelope SN subclass but among the slowest. The light curve lacks the initial cooling phase and shows a bright main peak (peak M _V = −17.82 ± 0.17 mag), mostly driven by radioactive decay of ^56 Ni. The light-curve analysis suggests a thin outer H envelope ( M _env ∼ 0.05 M _⊙ ) and a compact progenitor ( R _env ∼ 3 R _⊙ ). An interaction-powered synchrotron self-absorption model can reproduce the radio light curves with a mean shock velocity of 0.1 c . The mass-loss rate is estimated to be in the range of (1.9−2.8) × 10 ^−5 M _⊙ yr ^−1 for an assumed wind velocity of 1000 km s ^−1 , which is on the high end in comparison with other compact SNe IIb/Ib. SN 2022crv fills a previously unoccupied parameter space of a very compact progenitor, representing a beautiful continuity between the compact and extended progenitor scenario of SNe IIb/Ib

    Catalytic Transformations of Biomass-Derived Materials into Value-Added Chemicals

    No full text
    corecore