129 research outputs found

    Cross-talk between IL-6 and TGF-β signaling in hepatoma cells

    Get PDF
    AbstractInterleukin-6 (IL-6) is a multifunctional cytokine that plays important roles in the immune system, hematopoiesis, and acute phase reactions. Transforming growth factor-β (TGF-β) also has pleiotropy including the production of acute phase proteins in hepatocytes. To elucidate the cross-talk between IL-6 and TGF-β signaling pathways in hepatic cells, we investigated the effects of TGF-β on IL-6-induced signal transducer and activator of transcription-3 (STAT3) activation in a human hepatoma cell line, Hep3B. IL-6-induced activation of STAT3 activity and STAT3-mediated gene expression were augmented by TGF-β in Hep3B cells. We provide evidence that these activities were due to physical interactions between STAT3 and Sma- and MAD-related protein-3, bridged by p300. These results demonstrate a molecular mechanism of a cross-talk between STAT3 and TGF-β signaling pathways in hepatocytes

    The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling

    Get PDF
    Inhibitory Smads (I-Smads) repress signaling by cytokines of the transforming growth factor-β (TGF-β) superfamily. I-Smads have conserved carboxy-terminal Mad homology 2 (MH2) domains, whereas the amino acid sequences of their amino-terminal regions (N domains) are highly divergent from those of other Smads. Of the two different I-Smads in mammals, Smad7 inhibited signaling by both TGF-β and bone morphogenetic proteins (BMPs), whereas Smad6 was less effective in inhibiting TGF-β signaling. Analyses using deletion mutants and chimeras of Smad6 and Smad7 revealed that the MH2 domains were responsible for the inhibition of both TGF-β and BMP signaling by I-Smads, but the isolated MH2 domains of Smad6 and Smad7 were less potent than the full-length Smad7 in inhibiting TGF-β signaling. The N domains of I-Smads determined the subcellular localization of these molecules. Chimeras containing the N domain of Smad7 interacted with the TGF-β type I receptor (TβR-I) more efficiently, and were more potent in repressing TGF-β signaling, than those containing the N domain of Smad6. The isolated N domain of Smad7 physically interacted with the MH2 domain of Smad7, and enhanced the inhibitory activity of the latter through facilitating interaction with TGF-β receptors. The N domain of Smad7 thus plays an important role in the specific inhibition of TGF-β signaling

    Autocrine TGF-β Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HMG-Box Factors

    Get PDF
    SummaryDespite aggressive surgery, radiotherapy, and chemotherapy, treatment of malignant glioma remains formidable. Although the concept of cancer stem cells reveals a new framework of cancer therapeutic strategies against malignant glioma, it remains unclear how glioma stem cells could be eradicated. Here, we demonstrate that autocrine TGF-β signaling plays an essential role in retention of stemness of glioma-initiating cells (GICs) and describe the underlying mechanism for it. TGF-β induced expression of Sox2, a stemness gene, and this induction was mediated by Sox4, a direct TGF-β target gene. Inhibitors of TGF-β signaling drastically deprived tumorigenicity of GICs by promoting their differentiation, and these effects were attenuated in GICs transduced with Sox2 or Sox4. Furthermore, GICs pretreated with TGF-β signaling inhibitor exhibited less lethal potency in intracranial transplantation assay. These results identify an essential pathway for GICs, the TGF-β-Sox4-Sox2 pathway, whose disruption would be a therapeutic strategy against gliomas

    TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell–derived endothelial cells

    Get PDF
    Recent findings have shown that embryonic vascular progenitor cells are capable of differentiating into mural and endothelial cells. However, the molecular mechanisms that regulate their differentiation, proliferation, and endothelial sheet formation remain to be elucidated. Here, we show that members of the transforming growth factor (TGF)-β superfamily play important roles during differentiation of vascular progenitor cells derived from mouse embryonic stem cells (ESCs) and from 8.5–days postcoitum embryos. TGF-β and activin inhibited proliferation and sheet formation of endothelial cells. Interestingly, SB-431542, a synthetic molecule that inhibits the kinases of receptors for TGF-β and activin, facilitated proliferation and sheet formation of ESC-derived endothelial cells. Moreover, SB-431542 up-regulated the expression of claudin-5, an endothelial specific component of tight junctions. These results suggest that endogenous TGF-β/activin signals play important roles in regulating vascular growth and permeability

    NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo

    Get PDF
    Drug release rate is an important factor in determining efficacy and toxicity of nanoscale drug delivery systems. However, optimization of the release rate in polymeric micellar nanoscale drug delivery systems has not been fully investigated. In this study NC-6301, a poly(ethylene glycol)-poly(aspartate) block copolymer with docetaxel (DTX) covalently bound via ester link, was synthesized with various numbers of DTX molecules bound to the polymer backbone. The number of DTX molecules was determined up to 14 to achieve an optimal release rate, based upon the authors’ own pharmacokinetic model using known patient data. Efficacy and toxicity of the formulation was then tested in animals. When administered three times at 4-day intervals, the maximum tolerated doses of NC-6301 and native DTX were 50 and 10 mg/kg, respectively, in nude mice. Tissue distribution studies of NC-6301 in mice at 50 mg/kg revealed prolonged release of free DTX in the tumor for at least 120 hours, thus supporting its effectiveness. Furthermore, in cynomolgus monkeys, NC-6301 at 6 mg/kg three times at 2-week intervals showed marginal toxicity, whereas native DTX, at 3 mg/kg with the same schedule, induced significant decrease of food consumption and neutrophil count. NC-6301 at 50 mg/kg in mice also regressed a xenografted tumor of MDA-MB-231 human breast cancer. Native DTX, on the other hand, produced only transient and slight regression of the same tumor xenograft. NC-6301 also significantly inhibited growth of OCUM-2MLN human scirrhous gastric carcinoma in an orthotopic mouse model. Total weight of metastatic lymph nodes was also reduced. In conclusion, NC-6301 with an optimized release rate improved the potency of DTX while reducing its toxicity

    Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia

    Get PDF
    Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo

    Ras signaling directs endothelial specification of VEGFR2+ vascular progenitor cells

    Get PDF
    Vascular endothelial growth factor receptor 2 (VEGFR2) transmits signals of crucial importance to vasculogenesis, including proliferation, migration, and differentiation of vascular progenitor cells. Embryonic stem cell–derived VEGFR2+ mesodermal cells differentiate into mural lineage in the presence of platelet derived growth factor (PDGF)–BB or serum but into endothelial lineage in response to VEGF-A. We found that inhibition of H-Ras function by a farnesyltransferase inhibitor or a knockdown technique results in selective suppression of VEGF-A–induced endothelial specification. Experiments with ex vivo whole-embryo culture as well as analysis of H-ras−/− mice also supported this conclusion. Furthermore, expression of a constitutively active H-Ras[G12V] in VEGFR2+ progenitor cells resulted in endothelial differentiation through the extracellular signal-related kinase (Erk) pathway. Both VEGF-A and PDGF-BB activated Ras in VEGFR2+ progenitor cells 5 min after treatment. However, VEGF-A, but not PDGF-BB, activated Ras 6–9 h after treatment, preceding the induction of endothelial markers. VEGF-A thus activates temporally distinct Ras–Erk signaling to direct endothelial specification of VEGFR2+ vascular progenitor cells

    TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling

    Get PDF
    The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis. Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers. Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.UTokyo FOCUS Articles掲載「がんの増殖・転移を促進する新規因子の同定 小胞輸送を標的とする新しいがん治療戦略への可能性」 https://www.u-tokyo.ac.jp/focus/ja/articles/z0508_00119.htmlUTokyo FOCUS Articles "Possible target for future cancer treatment : Deregulation of system to move molecules in the cell may promote tumor growth, metastasis" https://www.u-tokyo.ac.jp/focus/en/articles/z0508_00120.htm

    Tumor-promoting functions of transforming growth factor-β in progression of cancer

    Get PDF
    Transforming growth factor-β (TGF-β) elicits both tumor-suppressive and tumor-promoting functions during cancer progression. Here, we describe the tumor-promoting functions of TGF-β and how these functions play a role in cancer progression. Normal epithelial cells undergo epithelial-mesenchymal transition (EMT) through the action of TGF-β, while treatment with TGF-β and fibroblast growth factor (FGF)-2 results in transdifferentiation into activated fibroblastic cells that are highly migratory, thereby facilitating cancer invasion and metastasis. TGF-β also induces EMT in tumor cells, which can be regulated by oncogenic and anti-oncogenic signals. In addition to EMT promotion, invasion and metastasis of cancer are facilitated by TGF-β through other mechanisms, such as regulation of cell survival, angiogenesis, and vascular integrity, and interaction with the tumor microenvironment. TGF-β also plays a critical role in regulating the cancer-initiating properties of certain types of cells, including glioma-initiating cells. These findings thus may be useful for establishing treatment strategies for advanced cancer by inhibiting TGF-β signaling
    corecore