787 research outputs found

    Bound on the closed quantum dynamics under stochastic noise

    Full text link
    Quantum information technologies require careful control for preparing a desired target state used for an information resource. The one of the obstacles is the stochastic noise on the control Hamiltonian, under which the realistic control performance is severely limited. Therefore, the reachability analysis, which in our scenario quantifying the distance between the obtained state under the noise and the target state, is of great importance. This paper gives a lower bound of the fidelity for a closed quantum system under the stochastic noise. Note that this bound is computable without considering the stochastic process and needing the full time-dependent dynamics of the states. We demonstrate the actual tightness of this bound via numerical simulation.Comment: 5 pages, 2 figure

    An ytterbium quantum gas microscope with narrow-line laser cooling

    Get PDF
    We demonstrate site-resolved imaging of individual bosonic 174Yb^{174}\mathrm{Yb} atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the 1S0^1S_0-1P1^1P_1 transition of the wavelength λ\lambda = 399 nm for high-resolution imaging and preserve atoms at the same lattice sites during the fluorescence imaging, we simultaneously cool atoms by additionally applying narrow-line optical molasses with the 1S0^1S_0-3P1^3P_1 transition of the wavelength λ\lambda = 556 nm. We achieve a low temperature of $T = 7.4(1.3)\ \mu\mathrm{K}$, corresponding to a mean oscillation quantum number along the horizontal axes of 0.22(4) during imaging process. We detect on average 200 fluorescence photons from a single atom within 400 ms exposure time, and estimate the detection fidelity of 87(2)%. The realization of a quantum gas microscope with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens up the possibilities for studying various kinds of quantum many-body systems such as Bose and Fermi gases, and their mixtures, and also long-range-interacting systems such as Rydberg states.Comment: 14 pages, 6 figure

    Cosmic R-string, R-tube and Vacuum Instability

    Full text link
    We show that a cosmic string associated with spontaneous U(1)RU(1)_R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.Comment: 28 pages, 17 figures, v2: references added, improved arguments in sec 3.5.

    Origin of the anomalous mass renormalization in metallic quantum well states of correlated oxide SrVO3_3

    Full text link
    InIn situsitu angle-resolved photoemission spectroscopy (ARPES) has been performed on SrVO3_3 ultrathin films, which show metallic quantum well (QW) states, to unveil the origin of the anomalous mass enhancement in the QW subbands. The line-shape analysis of the ARPES spectra reveals that the strength of the electron correlation increases as the subband bottom energy approaches the Fermi level. These results indicate that the anomalous subband-dependent mass enhancement mainly arises from the quasi-one-dimensional character of confined V 3d3d states as a result of their orbital-selective quantization.Comment: 6 pages, 3 figure
    corecore