405 research outputs found

    First-order restoration of SU(Nf) x SU(Nf) chiral symmetry with large Nf and Electroweak phase transition

    Full text link
    It has been argued by Pisarski and Wilczek that finite temperature restoration of the chiral symmetry SU(Nf) x SU(Nf) is first-order for Nf >=3. This type of chiral symmetry with a large Nf may appear in the Higgs sector if one considers models such as walking technicolor theories. We examine the first-order restoration of the chiral symmetry from the point of view of the electroweak phase transition. The strength of the transition is estimated in SU(2) x U(1) gauged linear sigma model by means of the finite temperature effective potential at one-loop with the ring improvement. Even if the mass of the neutral scalar boson corresponding to the Higgs boson is larger than 114 GeV, the first-order transition can be strong enough for the electroweak baryogenesis, as long as the extra massive scalar bosons (required for the linear realization) are kept heavier than the neutral scalar boson. Explicit symmetry breaking terms reduce the strength of the first-order transition, but the transition can remain strongly first-order even when the masses of pseudo Nambu-Goldstone bosons become as large as the current lower bound of direct search experiments.Comment: 18 pages, 18 figures, minor corrections, references adde

    Spin-dependent tunneling in modulated structures of (Ga,Mn)As

    Full text link
    A model of coherent tunneling, which combines multi-orbital tight-binding approximation with Landauer-B\"uttiker formalism, is developed and applied to all-semiconductor heterostructures containing (Ga,Mn)As ferromagnetic layers. A comparison of theoretical predictions and experimental results on spin-dependent Zener tunneling, tunneling magnetoresistance (TMR), and anisotropic magnetoresistance (TAMR) is presented. The dependence of spin current on carrier density, magnetization orientation, strain, voltage bias, and spacer thickness is examined theoretically in order to optimize device design and performance.Comment: 9 pages, 13 figures, submitted to PR

    Solution Structure of the Link Module: A Hyaluronan-Binding Domain Involved in Extracellular Matrix Stability and Cell Migration

    Get PDF
    AbstractLink modules are hyaluronan-binding domains found in proteins involved in the assembly of extracellular matrix, cell adhesion, and migration. The solution structure of the Link module from human TSG-6 was determined and found to consist of two α helices and two antiparallel β sheets arranged around a large hydrophobic core. This defines the consensus fold for the Link module superfamily, which includes CD44, cartilage link protein, and aggrecan. The TSG-6 Link module was shown to interact with hyaluronan, and a putative binding surface was identified on the structure. A structural database search revealed close similarity between the Link module and the C-type lectin domain, with the predicted hyaluronan-binding site at an analogous position to the carbohydrate-binding pocket in E-selectin

    All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

    Get PDF
    A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients

    Spin-polarized Zener tunneling in (Ga,Mn)As

    Full text link
    We investigate spin-polarized inter-band tunneling through measurement of (Ga,Mn)As based Zener tunnel diode. By placing the diode under reverse bias, electron spin polarization is transferred from the valence band of p-type (Ga,Mn)As to the conduction band of an adjacent n-GaAs layer. The resulting current is monitored by injection into a quantum well light emitting diode whose electroluminescence polarization is found to track the magnetization of the (Ga,Mn)As layer as a function of both temperature and magnetic field.Comment: 11 pages, 4 figures. Submitted, Physical Review B15 Rapid Communication

    Theory of spin-polarized bipolar transport in magnetic p-n junctions

    Full text link
    The interplay between spin and charge transport in electrically and magnetically inhomogeneous semiconductor systems is investigated theoretically. In particular, the theory of spin-polarized bipolar transport in magnetic p-n junctions is formulated, generalizing the classic Shockley model. The theory assumes that in the depletion layer the nonequilibrium chemical potentials of spin up and spin down carriers are constant and carrier recombination and spin relaxation are inhibited. Under the general conditions of an applied bias and externally injected (source) spin, the model formulates analytically carrier and spin transport in magnetic p-n junctions at low bias. The evaluation of the carrier and spin densities at the depletion layer establishes the necessary boundary conditions for solving the diffusive transport equations in the bulk regions separately, thus greatly simplifying the problem. The carrier and spin density and current profiles in the bulk regions are calculated and the I-V characteristics of the junction are obtained. It is demonstrated that spin injection through the depletion layer of a magnetic p-n junction is not possible unless nonequilibrium spin accumulates in the bulk regions--either by external spin injection or by the application of a large bias. Implications of the theory for majority spin injection across the depletion layer, minority spin pumping and spin amplification, giant magnetoresistance, spin-voltaic effect, biasing electrode spin injection, and magnetic drift in the bulk regions are discussed in details, and illustrated using the example of a GaAs based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data

    Get PDF
    Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct genotyping errors, (ii) search for autozygous segments genome-wide through regions with runs of homozygous SNPs, (iii) check the validity of the inbreeding history, and (iv) calculate the probability of the disease-causing gene being located in the regions identified. The genotyping error correction restored an average of 94.2% of the total length of all regions with run of homozygous SNPs, and 99.9% of the total length of them that were longer than 2 cM. At the end of the analysis, we would know the probability that regions identified contain a disease-causing gene, and we would be able to determine how much effort should be devoted to scrutinizing the regions. We confirmed the power of this algorithm using 6 patients with Siiyama-type α1-antitrypsin deficiency, a rare autosomal recessive disease in Japan. Our procedure will accelerate the identification of disease-causing genes using high-density SNP array data
    corecore