6 research outputs found

    Generation of Micronuclei during Interphase by Coupling between Cytoplasmic Membrane Blebbing and Nuclear Budding

    Get PDF
    Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes

    Emergence of Micronuclei and Their Effects on the Fate of Cells under Replication Stress

    Get PDF
    The presence of micronuclei in mammalian cells is related to several mutagenetic stresses. In order to understand how micronuclei emerge, behave in cells, and affect cell fate, we performed extensive time-lapse microscopy of HeLa H2B-GFP cells in the presence of hydroxyurea at low concentration. Micronuclei formed after mitosis from lagging chromatids or chromatin bridges between anaphase chromosomes and were stably maintained in the cells for up to one cell cycle. Nuclear buds also formed from chromatin bridges or during interphase. If the micronuclei-bearing cells entered mitosis, they either produced daughter cells without micronuclei or, more frequently, produced cells with additional micronuclei. Low concentrations of hydroxyurea efficiently induced multipolar mitosis, which generated lagging chromatids or chromatin bridges, and also generated multinuclear cells that were tightly linked to apoptosis. We found that the presence of micronuclei is related to apoptosis but not to multipolar mitosis. Furthermore, the structural heterogeneity among micronuclei, with respect to chromatin condensation or the presence of lamin B, derived from the mechanism of micronuclei formation. Our study reinforces the notion that micronucleation has important implications in the genomic plasticity of tumor cells

    heterochromatin in

    No full text
    human cell

    Regulation of c-myc through intranuclear localization of its RNA subspecies

    Get PDF
    We used fluorescence in situ hybridization (FISH) to detect c-myc RNA subspecies in human COLO 320DM tumor cells. Although the FISH procedure removed the majority of RNAs from the nucleolus, c-myc RNA continued to be detected in both the nucleoplasm and nucleolus. This finding suggests stable association between c-myc RNA and the nucleolus. Nucleolar accumulation of c-myc RNA appeared to be temporally regulated by cell cycle progression. Hybridization with exon- and strand-specific RNA probes indicated that the non-protein coding exon 1 plays a novel role in determining the subnuclear localization of c-myc RNA. Antisense RNA targeting exon 2 localized only with nucleoplasmic foci, where it might interact with the sense strand. Thus, c-myc gene expression may be regulated by intranuclear localization of its RNA
    corecore