526 research outputs found
Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array
The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis
W/SiC x-ray multilayers optimized for use above 100 keV
We have developed a new depth-graded multilayer system comprising W and SiC layers, suitable for use as hard x-ray reflective coatings operating in the energy range 100-200 keV. Grazing-incidence x-ray reflectance at E = 8 keV was used to characterize the interface widths, as well as the temporal and thermal stability in both periodic and depth-graded W/SiC structures, whereas synchrotron radiation was used to measure the hard x-ray reflectance of a depth-graded multilayer designed specifically for use in the range E ~150-170 keV. We have modeled the hard x-ray reflectance using newly derived optical constants, which we determined from reflectance versus incidence angle measurements also made using synchrotron radiation, in the range E = 120-180 keV. We describe our experimental investigation in detail, compare the new W/SiC multilayers with both W/Si and W/B4C films that have been studied previously, and discuss the significance of these results with regard to the eventual development of a hard x-ray nuclear line telescope
Manipulation of thiocillin variants by prepeptide gene replacement: Structure, conformation, and activity of heterocycle substitution mutants
Bacillus cereus ATCC 14579 converts the C-terminal 14 residues of a 52-mer prepeptide into a related set of eight variants of the thiocillin subclass of thiazolyl peptide antibiotics by a cascade of post-translational modifications that alter 13 of those 14 residues. We have introduced prepeptide gene variants into a knockout strain to conduct an alanine scan of all 14 progenitor residues, as well as a serine scan of the six cysteine residues that are converted to thiazoles in the mature natural product. No mature scaffolds were detected for the S1A and S10A mutants, consistent with their roles as the source of the pyridine core. In both the alanine and serine scans, only one substitution mutant failed to produce a mature scaffold: cysteine 11. Cysteine to serine mutants gave mixture of dehydrations, aromatizations, and unaltered alcohol side chains depending on position. Overall, substitutions that altered the trithiazolylpyridine core or reduced the conformational rigidity of the 26-membered macrocyclic loop led to loss of antibiotic activity. In total, 21 peptide mutants were cultured, from which production of 107 compounds was observed and 94 compounds, representing 17 structural mutants, were assayed for antibiotic activity. High-resolution NMR solution structures were determined for one mutant and one wild-type compound. These structures demonstrate that the tight conformational rigidity of the natural product is severely disrupted by loss of even a single heterocycle, perhaps accounting for the attendant loss of activity in such mutants
Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs
ePix10K is a hybrid pixel detector developed at SLAC for demanding
free-electron laser (FEL) applications, providing an ultrahigh dynamic range
(245 eV to 88 MeV) through gain auto-ranging. It has three gain modes (high,
medium and low) and two auto-ranging modes (high-to-low and medium-to-low). The
first ePix10K cameras are built around modules consisting of a sensor flip-chip
bonded to 4 ASICs, resulting in 352x384 pixels of 100 m x 100 m each.
We present results from extensive testing of three ePix10K cameras with FEL
beams at LCLS, resulting in a measured noise floor of 245 eV rms, or 67 e
equivalent noise charge (ENC), and a range of 11000 photons at 8 keV. We
demonstrate the linearity of the response in various gain combinations: fixed
high, fixed medium, fixed low, auto-ranging high to low, and auto-ranging
medium-to-low, while maintaining a low noise (well within the counting
statistics), a very low cross-talk, perfect saturation response at fluxes up to
900 times the maximum range, and acquisition rates of up to 480 Hz. Finally, we
present examples of high dynamic range x-ray imaging spanning more than 4
orders of magnitude dynamic range (from a single photon to 11000
photons/pixel/pulse at 8 keV). Achieving this high performance with only one
auto-ranging switch leads to relatively simple calibration and reconstruction
procedures. The low noise levels allow usage with long integration times at
non-FEL sources. ePix10K cameras leverage the advantages of hybrid pixel
detectors with high production yield and good availability, minimize
development complexity through sharing the hardware, software and DAQ
development with all other versions of ePix cameras, while providing an upgrade
path to 5 kHz, 25 kHz and 100 kHz in three steps over the next few years,
matching the LCLS-II requirements.Comment: 9 pages, 5 figure
Overview of segmented glass optics development for the Constellation-X hard X-ray telescope
We report recent work on segmented glass optics for the Constellation-H hard x-ray telescope. This effort seeks to both improve the figure of the free-standing glass substrates, and to refine a newly-developed mounting technology for the substrates. We discuss metrology on recently characterized glass shells both unmounted and mounted. We also present plans for several prototype optics to be constructed in the upcoming year
- âŚ