1,442 research outputs found
Some Remarks on Oscillating Inflation
In a recent paper Damour and Mukhanov describe a scenario where inflation may
continue during the oscillatory phase. This effect is possible because the
scalar field spends a significant fraction of each period of oscillation on the
upper part of the potential. Such additional period of inflation could push
perturbations after the slow roll regime to observable scales. Although in this
work we show that the small region of the Damour-Mukhanov parameter q gives the
main contribution to oscillating inflation, it was not satisfactory understood
until now. Furthermore, it gives an expression for the energy density spectrum
of perturbations, which is well behaved in the whole physical range of q .Comment: 4 pages including figures caption, 3 ps-figures. To appear in Phys.
Rev.
On Metric Preheating
We consider the generation of super-horizon metric fluctuations during an
epoch of preheating in the presence of a scalar field \chi quadratically
coupled to the inflaton. We find that the requirement of efficient broad
resonance is concomitant with a severe damping of super-horizon \delta\chi
quantum fluctuations during inflation. Employing perturbation theory with
backreaction included as spatial averages to second order in the scalar fields
and in the metric, we argue that the usual inflationary prediction for metric
perturbations on scales relevant for structure formation is not strongly
modified.Comment: 5 latex pages, 1 postscript figure included, uses revtex.sty in two
column format and epsf.sty, some typos corrected and references added. Links
and further material at http://astro.uchicago.edu/home/web/sigl/r4.htm
Semiclassical ultraextremal horizons
We examine backreaction of quantum massive fields on multiply-degenerate
(ultraextremal) horizons. It is shown that, under influence of the quantum
backreaction, the horizon of such a kind moves to a new position, near which
the metric does not change its asymptotics, so the ultraextremal black holes
and cosmological spacetimes do exist as self-consistent solutions of the
semiclassical field equations.Comment: References adde
Galaxy-CMB Cross-Correlation as a Probe of Alternative Models of Gravity
Bekenstein's alternative to general relativity, TeVeS, reduces to Modified
Newtonian Dynamics (MOND) in the galactic limit. On cosmological scales, the
(potential well overdensity) relationship is quite different than in
standard general relativity. Here we investigate the possibility of
cross-correlating galaxies with the cosmic microwave background (CMB) to probe
this relationship. At redshifts of order 2, the sign of the CMB-galaxy
correlation differs in TeVeS from that in general relativity. We show that this
effect is detectable and hence can serve as a powerful discriminator of these
two models of gravity.Comment: 10 pages, 6 figures, revised version re-submitted to Phys. Rev.
Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum
We derive and investigate an expression for the dynamically modified decay of
states coupled to an arbitrary continuum. This expression is universally valid
for weak temporal perturbations. The resulting insights can serve as useful
recipes for optimized control of decay and decoherence.Comment: 4 pages, 2 figures. Rewritten, changed figures, added reference
Exact identification of the radion and its coupling to the observable sector
Braneworld models in extra dimensions can be tested in laboratory by the
coupling of the radion to the Standard Model fields. The identification of the
radion as a canonically normalized field involves a careful General Relativity
treatment: if a bulk scalar is responsible for the stabilization of the system,
its fluctuations are entangled with the perturbations of the metric and they
also have to be taken into account (similarly to the well-developed theory of
scalar metric perturbations in 4D cosmology with a scalar field). Extracting a
proper dynamical variable in a warped geometry/scalar setting is a nontrivial
task, performed so far only in the limit of negligible backreaction of the
scalar field on the background geometry. We perform the general calculation,
diagonalizing the action up to second order in the perturbations and
identifying the physical eigenmodes of the system for any amplitude of the bulk
scalar. This computation allows us to derive a very simple expression for the
exact coupling of the eigenmodes to the Standard Model fields on the brane,
valid for an arbitrary background configuration. As an application, we discuss
the Goldberger-Wise mechanism for the stabilization of the radion in the
Randall-Sundrum type models. The existing studies, limited to small amplitude
of the bulk scalar field, are characterized by a radion mass which is
significantly below the physical scale at the observable brane. We extend them
beyond the small backreaction regime. For intermediate amplitudes, the radion
mass approaches the electroweak scale, while its coupling to the observable
brane remains nearly constant. At very high amplitudes, the radion mass instead
decreases, while the coupling sharply increases. Severe experimental
constraints are expected in this regime.Comment: 20 pages, 6 figure
Chaos and Preheating
We show evidence for a relationship between chaos and parametric resonance
both in a classical system and in the semiclassical process of particle
creation. We apply our considerations in a toy model for preheating after
inflation.Comment: 7 pages, 9 figures; uses epsfig and revtex v3.1. Matches version
accepted for publication in Phys. Rev.
- …