1,442 research outputs found

    Some Remarks on Oscillating Inflation

    Full text link
    In a recent paper Damour and Mukhanov describe a scenario where inflation may continue during the oscillatory phase. This effect is possible because the scalar field spends a significant fraction of each period of oscillation on the upper part of the potential. Such additional period of inflation could push perturbations after the slow roll regime to observable scales. Although in this work we show that the small region of the Damour-Mukhanov parameter q gives the main contribution to oscillating inflation, it was not satisfactory understood until now. Furthermore, it gives an expression for the energy density spectrum of perturbations, which is well behaved in the whole physical range of q .Comment: 4 pages including figures caption, 3 ps-figures. To appear in Phys. Rev.

    On Metric Preheating

    Get PDF
    We consider the generation of super-horizon metric fluctuations during an epoch of preheating in the presence of a scalar field \chi quadratically coupled to the inflaton. We find that the requirement of efficient broad resonance is concomitant with a severe damping of super-horizon \delta\chi quantum fluctuations during inflation. Employing perturbation theory with backreaction included as spatial averages to second order in the scalar fields and in the metric, we argue that the usual inflationary prediction for metric perturbations on scales relevant for structure formation is not strongly modified.Comment: 5 latex pages, 1 postscript figure included, uses revtex.sty in two column format and epsf.sty, some typos corrected and references added. Links and further material at http://astro.uchicago.edu/home/web/sigl/r4.htm

    Semiclassical ultraextremal horizons

    Full text link
    We examine backreaction of quantum massive fields on multiply-degenerate (ultraextremal) horizons. It is shown that, under influence of the quantum backreaction, the horizon of such a kind moves to a new position, near which the metric does not change its asymptotics, so the ultraextremal black holes and cosmological spacetimes do exist as self-consistent solutions of the semiclassical field equations.Comment: References adde

    Galaxy-CMB Cross-Correlation as a Probe of Alternative Models of Gravity

    Full text link
    Bekenstein's alternative to general relativity, TeVeS, reduces to Modified Newtonian Dynamics (MOND) in the galactic limit. On cosmological scales, the (potential well overdensity) relationship is quite different than in standard general relativity. Here we investigate the possibility of cross-correlating galaxies with the cosmic microwave background (CMB) to probe this relationship. At redshifts of order 2, the sign of the CMB-galaxy correlation differs in TeVeS from that in general relativity. We show that this effect is detectable and hence can serve as a powerful discriminator of these two models of gravity.Comment: 10 pages, 6 figures, revised version re-submitted to Phys. Rev.

    Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum

    Get PDF
    We derive and investigate an expression for the dynamically modified decay of states coupled to an arbitrary continuum. This expression is universally valid for weak temporal perturbations. The resulting insights can serve as useful recipes for optimized control of decay and decoherence.Comment: 4 pages, 2 figures. Rewritten, changed figures, added reference

    Exact identification of the radion and its coupling to the observable sector

    Full text link
    Braneworld models in extra dimensions can be tested in laboratory by the coupling of the radion to the Standard Model fields. The identification of the radion as a canonically normalized field involves a careful General Relativity treatment: if a bulk scalar is responsible for the stabilization of the system, its fluctuations are entangled with the perturbations of the metric and they also have to be taken into account (similarly to the well-developed theory of scalar metric perturbations in 4D cosmology with a scalar field). Extracting a proper dynamical variable in a warped geometry/scalar setting is a nontrivial task, performed so far only in the limit of negligible backreaction of the scalar field on the background geometry. We perform the general calculation, diagonalizing the action up to second order in the perturbations and identifying the physical eigenmodes of the system for any amplitude of the bulk scalar. This computation allows us to derive a very simple expression for the exact coupling of the eigenmodes to the Standard Model fields on the brane, valid for an arbitrary background configuration. As an application, we discuss the Goldberger-Wise mechanism for the stabilization of the radion in the Randall-Sundrum type models. The existing studies, limited to small amplitude of the bulk scalar field, are characterized by a radion mass which is significantly below the physical scale at the observable brane. We extend them beyond the small backreaction regime. For intermediate amplitudes, the radion mass approaches the electroweak scale, while its coupling to the observable brane remains nearly constant. At very high amplitudes, the radion mass instead decreases, while the coupling sharply increases. Severe experimental constraints are expected in this regime.Comment: 20 pages, 6 figure

    Chaos and Preheating

    Get PDF
    We show evidence for a relationship between chaos and parametric resonance both in a classical system and in the semiclassical process of particle creation. We apply our considerations in a toy model for preheating after inflation.Comment: 7 pages, 9 figures; uses epsfig and revtex v3.1. Matches version accepted for publication in Phys. Rev.
    • …
    corecore