9 research outputs found

    Sticky Matter: Jamming and rigid cluster statistics with attractive particle interactions

    Full text link
    While the large majority of theoretical and numerical studies of the jamming transition consider athermal packings of purely repulsive spheres, real complex fluids and soft solids generically display attraction between particles. By studying the statistics of rigid clusters in simulations of soft particles with an attractive shell, we present evidence for two distinct jamming scenarios. Strongly attractive systems undergo a continuous transition in which rigid clusters grow and ultimately diverge in size at a critical packing fraction. Purely repulsive and weakly attractive systems jam via a first order transition, with no growing cluster size. We further show that the weakly attractive scenario is a finite size effect, so that for any nonzero attraction strength, a sufficiently large system will fall in the strongly attractive universality class. We therefore expect attractive jamming to be generic in the laboratory and in nature.Comment: 4 pages, 5 figure

    Universal scaling of flow curves: comparison between experiments and simulations

    Get PDF
    Yield stress materials form an interesting class of materials that behave like solids at small stresses, but start to flow once a critical stress is exceeded. It has already been reported both in experimental and simulation work that flow curves of different yield stress materials can be scaled with the distance to jamming or with the confining pressure. However, different scaling exponents are found between experiments and simulations. In this paper we identify sources of this discrepancy. We numerically relate the volume fraction with the confining pressure and discuss the similarities and differences between rotational and oscillatory measurements. Whereas simulations are performed in the elastic response regime close to the jamming transition and with very small amplitudes to calculate the scaling exponents, these conditions are hardly possible to achieve experimentally. Measurements are often performed far away from the critical volume fraction and at large amplitudes. We show that these differences are the underlying reason for the different exponents for rescaling flow curves

    Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries

    Get PDF
    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions

    Scaling of flow curves : Comparison between experiments and simulations

    Get PDF
    Yield-stress materials form an interesting class of materials that behave like solids at small stresses, but start to flow once a critical stress is exceeded. It has already been reported both in experimental and simulation work that flow curves of different yield-stress materials can be scaled with the distance to jamming or with the confining pressure. However, different scaling exponents are found between experiments and simulations. In this paper we identify sources of this discrepancy. We numerically relate the volume fraction with the confining pressure and discuss the similarities and differences between rotational and oscillatory measurements. Whereas simulations are performed in the elastic response regime close to the jamming transition and with very small amplitudes to calculate the scaling exponents, these conditions are hardly possible to achieve experimentally. Measurements are often performed far away from the critical volume fraction and at large amplitudes. We show that these differences are the underlying reason for the different exponents for rescaling flow curves

    Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries

    No full text
    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier-Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (?p (1)). Next, ?p (1) was compared to the pressure-drop from CFD (?p CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in ?p geom. We found that ?p (1) adequately estimated ?p CFD with velocity profiles that have one free parameter ?. This ? was successfully related to geometry and flow, resulting in an excellent agreement between ?p CFD and ?p geom: 3.9 ? 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased
    corecore