113 research outputs found

    Retention of brivaracetam in adults with drug-resistant epilepsy at a single tertiary care center

    Get PDF
    INTRODUCTION: Brivaracetam (BRV) is licensed as an adjunctive treatment for focal epilepsy. We describe our clinical experience with BRV at a large UK tertiary center. METHODS: Adults initiated on BRV between July 2015 and July 2020 were followed up until they discontinued BRV or September 2021. Data on epilepsy syndrome, duration, seizure types, concomitant and previous antiseizure medication (ASM) use, BRV dosing, efficacy, and side effects were recorded. Efficacy was categorized as temporary (minimum three months) or ongoing (at last follow-up) seizure freedom, ≥50% seizure reduction, or other benefits (e.g., no convulsions or daytime seizures). Brivaracetam retention was estimated using Kaplan-Meier survival analysis. RESULTS: Two-hundred people were treated with BRV, of whom 81% had focal epilepsy. The mean (interquartile range [IQR]) follow-up time was 707 (688) days, and the dose range was 50-600 mg daily. The mean (IQR) of the previous number of used ASMs was 6.9 (6.0), and concomitant use was 2.2 (1.0). One-hundred and eighty-eight people (94%) had previously discontinued levetiracetam (LEV), mainly due to side effects. 13/200 (6.5%) were seizure free for a minimum of six months during treatment, and 46/200 (23%) had a ≥50% reduction in seizure frequency for six months or more. Retention rates were 83% at six months, 71% at 12 months, and 57% at 36 months. Brivaracetam was mostly discontinued due to side effects (38/75, 51%) or lack of efficacy (28/75, 37%). Concomitant use of carbamazepine significantly increased the hazard ratio of discontinuing BRV due to side effects (p = 0.006). The most commonly reported side effects were low mood (20.5%), fatigue (18%) and aggressive behavior (8.5%). These side effects were less prevalent than when the same individuals took LEV (low mood, 59%; aggressive behavior, 43%). Intellectual disability was a risk factor for behavioral side effects (p = 0.004), and a pre-existing mood disorder significantly increased the likelihood of further episodes of low mood (p = 0.019). CONCLUSIONS: Brivaracetam was effective at a broad range of doses in managing drug-resistant epilepsy across various phenotypes, but less effective than LEV in those who switched due to poor tolerability on LEV. There were no new tolerability issues, but 77% of the individuals experiencing side effects on BRV also experienced similar side effects on LEV

    Contribution of the μ-opioid receptor system to affective disorders in temporal lobe epilepsy: A bidirectional relationship?

    Full text link
    OBJECTIVE Affective disorders are frequent comorbidities of temporal lobe epilepsy (TLE). The endogenous opioid system has been implicated in both epilepsy and affective disorders, and may play a significant role in their bidirectional relationship. In this cross-sectional study, we investigated the association between μ-opioid receptor binding and affective disorders in patients with TLE. METHODS Nine patients with TLE and depression/anxiety underwent 11^{11} C-carfentanil positron emission tomography (CFN PET) and neuropsychiatric assessment, including the Hospital Anxiety and Depression Scale and the Positive and Negative Affect Schedule. The normalized CFN PET scans were compared with those of 26 age-matched healthy controls. Correlation analyses with affective symptoms were performed by region of interest-based analysis focusing on the limbic circuit and orbitofrontal cortex. RESULTS We observed widely reduced CFN binding potential (BP) in bilateral frontal lobes and striata in patients with TLE compared to healthy controls. In the TLE group, more severe anxiety and negative affect were associated with decreased CFN BP in the posterior cingulate gyrus. SIGNIFICANCE In patients with TLE, interictally reduced binding in the opioid system was associated with higher levels of anxiety and negative affect. We speculate that seizure-related agonist-driven desensitization and downregulation of opioid receptors could be a potential underlying pathomechanism

    Volumetric analysis of the piriform cortex in temporal lobe epilepsy

    Full text link
    The piriform cortex, at the confluence of the temporal and frontal lobes, generates seizures in response to chemical convulsants and electrical stimulation. Resection of more than 50% of the piriform cortex in anterior temporal lobe resection for refractory temporal lobe epilepsy (TLE) was associated with a 16-fold higher chance of seizure freedom. The objectives of the current study were to implement a robust protocol to measure piriform cortex volumes and to quantify the correlation of these volumes with clinical characteristics of TLE. Sixty individuals with unilateral TLE (33 left) and 20 healthy controls had volumetric analysis of left and right piriform cortex and hippocampi. A protocol for segmenting and measuring the volumes of the piriform cortices was implemented, with good inter-rater and test-retest reliability. The right piriform cortex volume was consistently larger than the left piriform cortex in both healthy controls and patients with TLE. In controls, the mean volume of the right piriform cortex was 17.7% larger than the left, and the right piriform cortex extended a mean of 6 mm (Range: -4 to 12) more anteriorly than the left. This asymmetry was also seen in left and right TLE. In TLE patients overall, the piriform cortices were not significantly smaller than in controls. Hippocampal sclerosis was associated with decreased ipsilateral and contralateral piriform cortex volumes. The piriform cortex volumes, both ipsilateral and contralateral to the epileptic temporal lobe, were smaller with a longer duration of epilepsy. There was no significant association between piriform cortex volumes and the frequency of focal seizures with impaired awareness or the number of anti-seizure medications taken. Implementation of robust segmentation will enable consistent neurosurgical resection in anterior temporal lobe surgery for refractory TLE.

    In atrial fibrillation epilepsy risk differs between oral anticoagulants: active comparator, nested case-control study

    Get PDF
    AIMS: Atrial fibrillation (AF) is a risk factor for brain infarction, which can lead to epilepsy. We aimed to investigate whether treatment of AF with direct oral anticoagulants (DOACs) affects the risk of epilepsy in comparison to treatment with the vitamin K antagonist phenprocoumon (PPC). METHODS AND RESULTS: We performed an active comparator, nested case-control study based on the German Pharmacoepidemiological Research Database that includes claims data from statutory health insurance providers of about 25 million persons since 2004. In 2011-17, 227 707 AF patients initiated treatment with a DOAC or PPC, of which 1828 cases developed epilepsy on current treatment with an oral anticoagulant. They were matched to 19 084 controls without epilepsy. Patients with DOAC treatment for AF had an overall higher risk of epilepsy with an odds ratio of 1.39, 95% CI (1.24; 1.55) compared to current PPC treatment. Cases had higher baseline CHA2DS2-VASc scores and more frequently a history of stroke than controls. After excluding patients with ischaemic stroke prior to the diagnosis of epilepsy, the risk of epilepsy was still higher on DOACs than on PPC. In contrast, within a cohort of patients with venous thromboembolism, the risk of epilepsy on treatment with DOACs was less elevated [adjusted odds ratio 1.15, 95% CI (0.98; 1.34)]. CONCLUSION: In patients with AF initiating oral anticoagulation, treatment with a DOAC was associated with an increased risk of epilepsy compared to the vitamin K antagonist PPC. Covert brain infarction may explain the observed elevated risk of epilepsy

    Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy

    Full text link
    Focal epilepsy in adults is associated with progressive atrophy of the cortex at a rate more than double that of normal ageing. We aimed to determine whether successful epilepsy surgery interrupts progressive cortical thinning. In this longitudinal case-control neuroimaging study, we included subjects with unilateral temporal lobe epilepsy (TLE) before (n = 29) or after (n = 56) anterior temporal lobe resection and healthy volunteers (n = 124) comparable regarding age and sex. We measured cortical thickness on paired structural MRI scans in all participants and compared progressive thinning between groups using linear mixed effects models. Compared to ageing-related cortical thinning in healthy subjects, we found progressive cortical atrophy on vertex-wise analysis in TLE before surgery that was bilateral and localized beyond the ipsilateral temporal lobe. In these regions, we observed accelerated annualized thinning in left (left TLE 0.0192 ± 0.0014 versus healthy volunteers 0.0032 ± 0.0013 mm/year, P < 0.0001) and right (right TLE 0.0198 ± 0.0016 versus healthy volunteers 0.0037 ± 0.0016 mm/year, P < 0.0001) presurgical TLE cases. Cortical thinning in these areas was reduced after surgical resection of the left (0.0074 ± 0.0016 mm/year, P = 0.0006) or right (0.0052 ± 0.0020 mm/year, P = 0.0006) anterior temporal lobe. Directly comparing the post- versus presurgical TLE groups on vertex-wise analysis, the areas of postoperatively reduced thinning were in both hemispheres, particularly, but not exclusively, in regions that were affected preoperatively. Participants who remained completely seizure-free after surgery had no more progressive thinning than that observed during normal ageing. Those with postoperative seizures had small areas of continued accelerated thinning after surgery. Thus, successful epilepsy surgery prevents progressive cortical atrophy that is observed in TLE and may be potentially neuroprotective. This effect was more pronounced in those who remained seizure-free after temporal lobe resection, normalizing the rate of atrophy to that of normal ageing. These results provide evidence of epilepsy surgery preventing further cerebral damage and provide incentives for offering early surgery in refractory TLE

    Verbal fluency functional magnetic resonance imaging detects anti-seizure effects and affective side effects of perampanel in people with focal epilepsy

    Full text link
    Perampanel, a noncompetitive antagonist of the postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor, is effective for controlling focal to bilateral tonic-clonic seizures but is also known to increase feelings of anger. Using statistical parametric mapping-derived measures of activation and task-modulated functional connectivity (psychophysiologic interaction), we investigated 14 people with focal epilepsy who had verbal fluency functional magnetic resonance imaging (fMRI) twice, before and after the add-on treatment of perampanel. For comparison, we included 28 people with epilepsy, propensity-matched for clinical characteristics, who had two scans but no change in anti-seizure medication (ASM) regimen in-between. After commencing perampanel, individuals had higher task-related activations in left orbitofrontal cortex (OFC), fewer task-related activations in the subcortical regions including the left thalamus and left caudate, and lower task-related thalamocaudate and caudate-subtantial nigra connectivity. Decreased task-related connectivity is observed between the left OFC and precuneus and left medial frontal lobe. Our results highlight the brain regions associated with the beneficiary therapeutic effects on focal to bilateral tonic-clonic seizures (thalamus and caudate) but also the undesired affective side effects of perampanel with increased anger and aggression (OFC)

    Antiepileptogenesis after Stroke - Trials and Tribulations: Methodological Challenges and Recruitment Results of a Phase II Study with Eslicarbazepine Acetate.

    Get PDF
    There is currently no evidence to support the use of antiseizure medications to prevent unprovoked seizures following stroke. Experimental animal models suggested a potential antiepileptogenic effect for eslicarbazepine acetate (ESL), and a Phase II, multicentre, randomised, double-blind, placebo-controlled study was designed to test this hypothesis and assess whether ESL treatment for 1 month can prevent unprovoked seizures following stroke. We outline the design and status of this antiepileptogenesis study, and discuss the challenges encountered in its execution to date. Patients at high risk of developing unprovoked seizures after acute intracerebral haemorrhage or acute ischaemic stroke were randomised to receive ESL 800 mg/day or placebo, initiated within 120 hours after primary stroke occurrence. Treatment continued until Day 30, then tapered off. Patients could receive all necessary therapies for stroke treatment according to clinical practice guidelines and standard of care, and are being followed up for 18 months. The primary efficacy endpoint is occurrence of a first unprovoked seizure within 6 months after randomisation ('failure rate'). Secondary efficacy assessments include occurrence of a first unprovoked seizure during 12 months after randomisation and during the entire study; functional outcomes (Barthel Index original 10-item version; National Institutes of Health Stroke Scale); post-stroke depression (Patient Health Questionnaire-9; PHQ-9); and overall survival. Safety assessments include evaluation of treatment-emergent adverse events; laboratory parameters; vital signs; electrocardiogram; suicidal ideation and behaviour (PHQ-9 question 9). The protocol aimed to randomise approximately 200 patients (1:1), recruited from 21 sites in seven European countries and Israel. Despite the challenges encountered, particularly during the COVID-19 pandemic, the study progressed and included a remarkable number of patients, with 129 screened and 125 randomised. Recruitment was stopped after 30 months, the first patient entered in May 2019, and the study is ongoing and following up on patients according to the Clinical Trial Protocol

    Thalamus and focal to bilateral seizures: A multiscale cognitive imaging study.

    Get PDF
    OBJECTIVE: To investigate the functional correlates of recurrent secondarily generalized seizures in temporal lobe epilepsy (TLE) using task-based fMRI as a framework to test for epilepsy-specific network rearrangements. Because the thalamus modulates propagation of temporal lobe onset seizures and promotes cortical synchronization during cognition, we hypothesized that occurrence of secondarily generalized seizures, i.e., focal to bilateral tonic-clonic seizures (FBTCS), would relate to thalamic dysfunction, altered connectivity, and whole-brain network centrality. METHODS: FBTCS occur in a third of patients with TLE and are a major determinant of disease severity. In this cross-sectional study, we analyzed 113 patients with drug-resistant TLE (55 left/58 right), who performed a verbal fluency fMRI task that elicited robust thalamic activation. Thirty-three patients (29%) had experienced at least one FBTCS in the year preceding the investigation. We compared patients with TLE-FBTCS to those without FBTCS via a multiscale approach, entailing analysis of statistical parametric mapping (SPM) 12-derived measures of activation, task-modulated thalamic functional connectivity (psychophysiologic interaction), and graph-theoretical metrics of centrality. RESULTS: Individuals with TLE-FBTCS had less task-related activation of bilateral thalamus, with left-sided emphasis, and left hippocampus than those without FBTCS. In TLE-FBTCS, we also found greater task-related thalamotemporal and thalamomotor connectivity, and higher thalamic degree and betweenness centrality. Receiver operating characteristic curves, based on a combined thalamic functional marker, accurately discriminated individuals with and without FBTCS. CONCLUSIONS: In TLE-FBTCS, impaired task-related thalamic recruitment coexists with enhanced thalamotemporal connectivity and whole-brain thalamic network embedding. Altered thalamic functional profiles are proposed as imaging biomarkers of active secondary generalization
    • …
    corecore