12 research outputs found

    Nanotesla torque magnetometry using a microcantilever

    Get PDF
    We present a novel ultrasensitive magnetometry technique using a micromachined magnetic antilever that is brought in resonance. The induced magnetic moment generates a torque on the cantilever, thereby effectively stiffening the cantilever spring constant and changing its resonance frequency. Experiments are in good correspondence with the presented analytical model for this frequency shift, predicting the detection of nanotesla magnetic fields.\u

    Parallel optical readout of a cantilever array in dynamic mode

    Get PDF
    In this work we present parallel optical readout of a cantilever array which operates in dynamic mode using a standard optical beam deflection configuration containing only one laser-detector pair. We show accurate readout of the resonance frequency shift of an individual cantilever within an array by designing arrays where each cantilever has a different resonance frequency. The different resonance frequencies are created by giving each cantilever a different length and allow parallel readout of all cantilevers within the array. We show that even if the cantilevers are closely spaced each cantilever resonance frequency can be individually tracked without signs of cross-talk at current measurement precision (below 12 mHz). Interference of the laser light reflecting of each cantilever is observed when the amplitude of the cantilever is on the order of the wavelength of the laser light

    Selective low concentration ammonia sensing in a microfluidic lab-on-a-chip

    Get PDF
    In the medical community, there is a considerable interest in a diagnostic breath analyzer for ammonia that is selectively enough to measure in exhaled air and small enough for the small volumes available in such an application. An indirect measurement system for low gaseous ammonia concentrations has been miniaturized and integrated on a chip in order to reach this goal. The detection limit of the system was calculated to be 1.1 parts per billion (ppb). The response time was determined to be 1.6 min with a gas How of 50 ml/min. The required gas volume for one measurement is therefore sufficiently small, although sampling assistance is required for breath analysis. The selectivity of the system is sufficient to measure ammonia concentrations in the low-ppb range. The system is even sufficiently selective to be used in environments that contain elevated carbon dioxide levels, like exhaled air. The lower ammonia concentration expected in diagnostic breath analysis applications, 50 ppb, was demonstrated to be detectable

    Fabrication of cantilever arrays with tips for parallel optical readout

    Get PDF
    We report on progress in the fabrication of cantilever arrays with tips. The process features only one lithographic step for the definition of both the tips and cantilevers. The tips have a uniform height distribution and are placed by selfalignment on the cantilever. The arrays are fabricated for an optical readout technique under development in which the cantilever arrays serve as diffraction gratings. This work describes our ongoing effort in array fabrication as well as preliminary results on optical readout of a previously fabricated batch of tipless cantilever arrays using Fraunhofer diffraction

    Force modulation for enhanced nanoscale electrical sensing

    Get PDF
    Scanning probe microscopy employing conductive probes is a powerful tool for the investigation and modification of electrical properties at the nanoscale. Application areas include semiconductor metrology, probe-based data storage and materials research. Conductive probes can also be used to emulate nanoscale electrical contacts. However, unreliable electrical contact and tip wear have severely hampered the widespread usage of conductive probes for these applications. In this paper we introduce a force modulation technique for enhanced nanoscale electrical sensing using conductive probes. This technique results in lower friction, reduced tip wear and enhanced electrical contact quality. Experimental results using phase-change material stacks and platinum silicide conductive probes clearly demonstrate the efficacy of the proposed technique. Furthermore, conductive-mode imaging experiments on specially prepared platinum/carbon samples are presented to demonstrate the widespread applicability of this technique

    Parallel Probe Readout

    Get PDF
    In this thesis techniques are developed to read out nanoscale probes and arrays of probes.The main targeted application area is probe-based data storage.The work also contributes to other areas, such as metrology, biological sensing, materials research and nano-electro-mechanical switches. First, an exhaustive literature review of the accomplishments within probe storage is presented. It is found that optical readout techniques are used extensively in applications using probes; however, the very demanding application probe storage is not amongst them. Optical readout of probes offers reliability, high-speed, low noise and low complexity. It has to be extended to operation on arrays of probes for successful implementation in probe storage. The first technique that is developed in this work is parallel...

    Using diffraction to detect deflection of the cantilevers in an array

    Get PDF
    We present an optical technique to detect cantilever deflection of an array using Fraunhofer diffraction patterns. Application areas include probe-based data storage. Intensity profiles of different cantilever arrays are captured on a CCD camera and compared with our model. These measurements are in excellent agreement with the Fraunhofer theory, less than 3% deviation is found. Each cantilever can either be deflected by a fixed amount or undeflected. Based on noise measurements on our setup and intensity patterns simulations, we predict that this method allows the measurement of 1nm deflections in an array of six cantilevers with an SNR of 35dB
    corecore