141 research outputs found

    q-Krawtchouk polynomials as spherical functions on the Hecke algebra of type B

    Full text link
    The generic Hecke algebra for the hyperoctahedral group, i.e. the Weyl group of type B, contains the generic Hecke algebra for the symmetric group, i.e. the Weyl group of type A, as a subalgebra. Inducing the index representation of the subalgebra gives a Hecke algebra module, which splits multiplicity free. The corresponding zonal spherical functions are calculated in terms of q-Krawtchouk polynomials. The result covers a number of previously established interpretations of (q-)Krawtchouk polynomials on the hyperoctahedral group, finite groups of Lie type, hypergroups and the quantum SU(2) group. Jimbo's analogue of the Frobenius-Schur-Weyl duality is a key ingredient in the proof.Comment: AMS-TeX v. 2.1, 30 page

    Convolutions for orthogonal polynomials from Lie and quantum algebra representations

    Full text link
    The interpretation of the Meixner-Pollaczek, Meixner and Laguerre polynomials as overlap coefficients in the positive discrete series representations of the Lie algebra su(1,1) and the Clebsch-Gordan decomposition leads to generalisations of the convolution identities for these polynomials. Using the Racah coefficients convolution identities for continuous Hahn, Hahn and Jacobi polynomials are obtained. From the quantised universal enveloping algebra for su(1,1) convolution identities for the Al-Salam and Chihara polynomials and the Askey-Wilson polynomials are derived by using the Clebsch-Gordan and Racah coefficients. For the quantised universal enveloping algebra for su(2) q-Racah polynomials are interpreted as Clebsch-Gordan coefficients, and the linearisation coefficients for a two-parameter family of Askey-Wilson polynomials are derived.Comment: AMS-TeX, 31 page

    Spectral Analysis of Certain Schr\"odinger Operators

    Get PDF
    The JJ-matrix method is extended to difference and qq-difference operators and is applied to several explicit differential, difference, qq-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages]

    Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions

    Get PDF
    Burchnall's method to invert the Feldheim-Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its qq-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite support, including the Wilson and Askey-Wilson polynomials. An integrated version gives the possibility to give alternate expression for orthogonal polynomials with respect to a modified weight. This gives expansions for polynomials, such as Hermite, Laguerre, Meixner, Charlier, Meixner-Pollaczek and big qq-Jacobi polynomials and big qq-Laguerre polynomials. We show that one can find expansions for the orthogonal polynomials corresponding to the Toda-modification of the weight for the classical polynomials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre, Charlier, Meixner, Meixner-Pollaczek and Krawtchouk polynomials

    Noncommutative Gauge Theory on the q-Deformed Euclidean Plane

    Full text link
    In this talk we recall some concepts of Noncommutative Gauge Theories. In particular, we discuss the q-deformed two-dimensional Euclidean Plane which is covariant with respect to the q-deformed Euclidean group. A Seiberg-Witten map is constructed to express noncommutative fields in terms of their commutative counterparts.Comment: 5 pages; Talk given by Frank Meyer at the 9th Adriatic Meeting, September 4th-14th, 2003, Dubrovni

    Spectral decomposition and matrix-valued orthogonal polynomials

    Get PDF
    The relation between the spectral decomposition of a self-adjoint operator which is realizable as a higher order recurrence operator and matrix-valued orthogonal polynomials is investigated. A general construction of such operators from scalar-valued orthogonal polynomials is presented. Two examples of matrix-valued orthogonal polynomials with explicit orthogonality relations and three-term recurrence relation are presented, which both can be considered as 2×22\times 2-matrix-valued analogues of subfamilies of Askey-Wilson polynomials.Comment: 15 page

    Wilson function transforms related to Racah coefficients

    Full text link
    The irreducible *-representations of the Lie algebra su(1,1)su(1,1) consist of discrete series representations, principal unitary series and complementary series. We calculate Racah coefficients for tensor product representations that consist of at least two discrete series representations. We use the explicit expressions for the Clebsch-Gordan coefficients as hypergeometric functions to find explicit expressions for the Racah coefficients. The Racah coefficients are Wilson polynomials and Wilson functions. This leads to natural interpretations of the Wilson function transforms. As an application several sum and integral identities are obtained involving Wilson polynomials and Wilson functions. We also compute Racah coefficients for U_q(\su(1,1)), which turn out to be Askey-Wilson functions and Askey-Wilson polynomials.Comment: 48 page

    Green function on the quantum plane

    Full text link
    Green function (which can be called the q-analogous of the Hankel function) on the quantum plane E_q^2= E_q(2)/U(1) is constructed.Comment: 8 page

    Covariant q-differential operators and unitary highest weight representations for U_q su(n,n)

    Full text link
    We investigate a one-parameter family of quantum Harish-Chandra modules of U_q sl(2n). This family is an analog of the holomorphic discrete series of representations of the group SU(n,n) for the quantum group U_q su(n, n). We introduce a q-analog of "the wave" operator (a determinant-type differential operator) and prove certain covariance property of its powers. This result is applied to the study of some quotients of the above-mentioned quantum Harish-Chandra modules. We also prove an analog of a known result by J.Faraut and A.Koranyi on the expansion of reproducing kernels which determines the analytic continuation of the holomorphic discrete series.Comment: 26 page
    corecore