7 research outputs found

    Attention and time constraints in performing and learning a table tennis forehand shot

    Get PDF
    This is a section on p. S95 of article 'Verbal and Poster: Motor Development, Motor Learning and Control, and Sport and Exercise Psychology' in Journal of Sport and Exercise Psychology, 2010, v.32, p.S36-S237published_or_final_versio

    No transfer of calibration between action and perception in learning a golf putting task

    Get PDF
    We assessed calibration of perception and action in the context of a golf putting task. Previous research has shown that right-handed novice golfers make rightward errors both in the perception of the perfect aiming line from the ball to the hole and in the putting action. Right-handed experts, however, produce accurate putting actions but tend to make leftward errors in perception. In two experiments, we examined whether these skill-related differences in directional error reflect transfer of calibration from action to perception. In the main experiment, three groups of right-handed novice participants followed a pretest, practice, posttest, retention test design. During the tests, directional error for the putting action and the perception of the perfect aiming line were determined. During practice, participants were provided only with verbal outcome feedback about directional error; one group trained perception and the second trained action, whereas the third group did not practice. Practice led to a relatively permanent annihilation of directional error, but these improvements in accuracy were specific to the trained task. Hence, no transfer of calibration occurred between perception and action. The findings are discussed within the two-visual-system model for perception and action, and implications for perceptual learning in action are raised

    Is implicit motor learning preserved after stroke? A systematic review with meta-analysis

    Get PDF
    © 2016 Kal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients' automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved poststroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts
    corecore