22 research outputs found
Mangrove growth rings: fact or fiction?
The analysis of tree rings in the tropics is less straightforward than in temperate areas with a demarcated unfavourable winter season. But especially in mangroves, the highly dynamic intertidal environment and the overriding ecological drivers therein have been a reason for questioning the existence of growth rings. This study aimed at casting light on growth rings in mangroves. In six mangrove species growing in Gazi Bay, Kenya (Sonneratia alba, Heritiera littoralis, Ceriops tagal, Bruguiera gymnorrhiza, Xylocarpus granatum and Lumnitzera racemosa), the occurrence of growth rings was examined. Growth rate of each species was determined based on a 1-year period using the cambial marking technique. The effect of climate was furthermore considered by comparing the results with a number of wood samples originating from contrasting climatic regions. We can conclude that for growth rings to appear in mangroves more than one condition has to be fulfilled, making general statements impossible and explaining the prevalent uncertainty. Climatic conditions that result in a range of soil water salinity experienced over the year are a prerequisite for the formation of growth rings. For species with an anatomy characterized by indistinct ring boundaries, this should be combined with a growth rate of at least 0.3Â mm/year. The use of growth rings for age or growth rate determinations should thus be evaluated on a case by case basis
The status of Mtwapa Creek mangroves as perceived by the local communities
info:eu-repo/semantics/publishe
Characterization of O-glycosylated precursors of insulin-like growth factor II by matrix-assisted laser desorption/ionization mass spectrometry
High molecular weight precursors of insulin-like growth factor II (IGF-II) were isolated from Cohn fraction IV of human plasma by ultrafiltration, affinity chromatography and reversed-phase high-performance liquid chromatography. Molecular weight determination by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of two high molecular weight IGF-II preparations revealed heterogeneous glycosylation. A combination of enzymatic degradation and MALDI-MS were applied for further structural characterization of the glycosylated precursors of IGF-II. The first step was molecular weight determination of intact high molecular weight IGF-IIs prior to and after treatment with neuraminidase and O-glycosidase. This, together with a comparison of molecular weight information available from the cDNA, revealed that both high molecular weight IGF-II species contain an identical C-terminal extension of 20 residues but different degrees of glycosylation. Second, comparative Endo Glu-C digestion of the preparations prior to and after enzymatic release of carbohydrates and subsequent remeasurement of the molecular weight by MALDI-MS confirmed the primary structure of precursor IGF-II1-87. The O-linked carbohydrates were found to be associated with the C-terminal extension and the heterogeneity was identified as varied sialylated forms of one and two HexNAc-Hex groups
Specific leukotriene formation by purified human eosinophils and neutrophils
Human granulocytes isolated from peripheral blood have been described to synthesize both LTB4 and LTC4 from arachidonic acid. We have observed that the amount of LTC4 produced by human granulocyte preparations is strongly dependent on the relative amount of eosinophils. To investigate a possibly significant difference in leukotriene synthesis of the eosinophilic and neutrophilic granulocytes, we developed a purification method to isolate both cell types from granulocytes obtained from the blood of healthy donors. Leukotrienes were generated by incubation of the purified cells with arachidonic acid, calcium ionophore A23187, calcium-chloride and reduced glutathione. Surprisingly, eosinophils were found to produce almost exclusively the spasmogenic LTC4. In contrast, neutrophils produce almost exclusively the chemotactic LTB4, its omega-hydroxylated metabolite 20-hydroxy-LTB4 and two non-enzymically formed LTB4 isomers
IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
The IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.</p