468 research outputs found

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √ s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Corrigendum to "Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at √s=13 TeV" (Physics Letters B, 842 (2023), 137379)

    Get PDF

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √ s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Medium-Induced Modification of Z-Tagged Charged Particle Yields in Pb+Pb Collisions at 5.02 TeV with the ATLAS Detector

    Get PDF
    The yield of charged particles opposite to a Z boson with large transverse momentum ( p T ) is measured in 260     pb − 1 of p p and 1.7     nb − 1 of Pb + Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark-gluon plasma created in Pb + Pb collisions. Compared with p p collisions, charged-particle yields in Pb + Pb collisions show significant modifications as a function of charged-particle p T in a way that depends on event centrality and Z boson p T . The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p T regime difficult to measure through other channels

    Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton is presented. The search is based on a dataset of pp collisions at s√ = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying τ -lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing b-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying τ-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into tτ and bν. Scalar leptoquarks decaying exclusively into tτ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into tτ, the lower mass limit is 1.22 TeV

    Measurement of the energy asymmetry in t(t)over-barj production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb1139\,{\mathrm {fb}}^{-1} 139 fb - 1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV\sqrt{s}=13\,\text {TeV} s = 13 TeV . The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic ttˉt{\bar{t}} t t ¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV350\,\text {GeV} 350 GeV . The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be 0.043±0.020-0.043\pm 0.020 - 0.043 ± 0.020 , in agreement with the SM prediction of 0.037±0.003-0.037\pm 0.003 - 0.037 ± 0.003 . Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

    Get PDF
    Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by ∼50% for jet pT ∼ 20 GeV and by ∼80% for jet pT 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for 20 < pT < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, τ -leptons), reducing the overall event size on disk by about 6% in early Run 3 pileup conditions. Offline reconstruction for Run 3 includes the timing requirement

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]
    corecore