230 research outputs found

    Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo.

    Get PDF
    Myrtucommulone a nonprenylated acylphloroglucinol contained in the leaves of myrtle (Myrtus communis), has been reported to suppress the biosynthesis of eicosanoids by inhibition of 5-lipoxygenase and cyclooxygenase-1 in vitro and to inhibit the release of elastase and the formation of reactive oxygen species in activated polymorphonuclear leukocytes. Here, in view of the ability of MC to suppress typical proinflammatory cellular responses in vitro, we have investigated the effects of MC in in vivo models of inflammation. MC was administered to mice intraperitoneally, and paw edema and pleurisy were induced by the subplantar and intrapleural injection of carrageenan, respectively. MC (0.5, 1.5, and 4.5 mg/kg i.p.) reduced the development of mouse carrageenan-induced paw edema in a dose-dependent manner. Moreover, MC (4.5 mg/kg i.p. 30 min before and after carrageenan) exerted anti-inflammatory effects in the pleurisy model. In particular, 4 h after carrageenan injection in the pleurisy model, MC reduced: 1) the exudate volume and leukocyte numbers; 2) lung injury (histological analysis) and neutrophil infiltration (myeloperoxidase activity); 3) the lung intercellular adhesion molecule-1 and P-selectin immunohistochemical localization; 4) the cytokine levels (tumor necrosis factor-α and interleukin-1 β in the pleural exudate and their immunohistochemical localization in the lung; 5) the leukotriene B 4, but not prostaglandin E2, levels in the pleural exudates; and 6) lung peroxidation (thiobarbituric acid-reactant substance) and nitrotyrosine and poly (ADP-ribose) immunostaining. In conclusion, our results demonstrate that MC exerts potent anti-inflammatory effects in vivo and offer a novel therapeutic approach for the management of acute inflammation. Copyright © 2009 by The American Society for Pharmacology and Experimental Therapeutics

    Fluorescent annulated imidazo[4,5-c]isoquinolines via a GBB-3CR/imidoylation sequence - DNA-interactions in pUC-19 gel electrophoresis mobility shift assay

    Get PDF
    Herein we report the development of a sequential synthesis route towards annulated imidazo[4,5-c]isoquinolines comprising a GBB-3CR, followed by an intramolecular imidoylative cyclisation. X-Ray crystallography revealed a flat 3D structure of the obtained polyheterocycles. Thus, we evaluated their interactions with double-stranded DNA by establishing a pUC-19 plasmid-based gel electrophoresis mobility shift assay, revealing a stabilising effect on ds-DNA against strand-break inducing conditions.Peer reviewe

    Fluorescent annulated imidazo[4,5-c]isoquinolines via a GBB-3CR/imidoylation sequence - DNA-interactions in pUC-19 gel electrophoresis mobility shift assay

    Get PDF
    Herein we report the development of a sequential synthesis route towards annulated imidazo[4,5-c]isoquinolines comprising a GBB-3CR, followed by an intramolecular imidoylative cyclisation. X-Ray crystallography revealed a flat 3D structure of the obtained polyheterocycles. Thus, we evaluated their interactions with double-stranded DNA by establishing a pUC-19 plasmid-based gel electrophoresis mobility shift assay, revealing a stabilising effect on ds-DNA against strand-break inducing conditions.Peer reviewe

    The molecular pharmacology and in vivo activity of 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase.

    Get PDF
    The microsomal prostaglandin E2 synthase (mPGES)-1 is one of the terminal isoenzymes of prostaglandin (PG) E2 biosynthesis. Pharmacological inhibitors of mPGES-1 are proposed as an alternative to nonsteroidal anti-inflammatory drugs. We recently presented the design and synthesis of a series of pirinixic acid derivatives that dually inhibit mPGES-1 and 5-lipoxygenase. Here, we investigated the mechanism of mPGES-1 inhibition, the selectivity profile, and the in vivo activity of α-(n-hexyl)- substituted pirinixic acid [YS121; 2-(4-chloro-6-(2,3-dimethylphenylamino) pyrimidin-2-ylthio)octanoic acid)] as a lead compound. In cell-free assays, YS121 inhibited human mPGES-1 in a reversible and noncompetitive manner (IC 50 = 3.4 μM), and surface plasmon resonance spectroscopy studies using purified in vitro-translated human mPGES-1 indicate direct, reversible, and specific binding to mPGES-1 (KD = 10-14 μM). In lipopolysaccharide-stimulated human whole blood, PGE2 formation was concentration dependently inhibited (IC50 =2 μM), whereas concomitant generation of the cyclooxygenase (COX)-2-derived thromboxane B2 and 6-keto PGF1α and the COX-1-derived 12(S)-hydroxy-5-cis-8,10- transheptadecatrienoic acid was not significantly reduced. In carrageenan-induced rat pleurisy, YS121 (1.5 mg/kg i.p.) blocked exudate formation and leukocyte infiltration accompanied by reduced pleural levels of PGE2 and leukotriene B4 but also of 6-keto PGF 1α. Taken together, these results indicate that YS121 is a promising inhibitor of mPGES-1 with anti-inflammatory efficiency in human whole blood as well as in vivo

    Bevacizumab continuation versus no continuation after first-line chemotherapy plus bevacizumab in patients with metastatic colorectal cancer: a randomized phase III non-inferiority trial (SAKK 41/06)

    Get PDF
    In this trial, stopping bevacizumab after completion of induction chemotherapy was associated with a shorter time to progression, but no statistically significant difference in overall survival compared with the bevacizumab continuation strategy. Non-inferiority could not be demonstrated. Treatment costs are substantially higher for continuous bevacizumab treatmen

    Exploration of Long-Chain Vitamin E Metabolites for the Discovery of a Highly Potent, Orally Effective, and Metabolically Stable 5-LOX Inhibitor that Limits Inflammation.

    Get PDF
    Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and β-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead

    Evidence and Policy in Aid-Dependent Settings

    Get PDF
    This chapter examines how the political dynamics of aid relationships can affect the use of evidence within health policymaking. Empirical examples from Cambodia, Ethiopia and Ghana illustrate how relationships between national governments and donor agencies influence the ways in which evidence is generated, selected, or utilised to inform policymaking. We particularly consider how relationships with donors influence the underlying systems and processes of evidence use. We find a number of issues affecting which bodies or forms of evidence are taken to be policy relevant, including: levels of local technical capacity to utilise or synthesise evidence; differing stakeholder framing of issues; and the influence of non-state actors on sector-wide systems of agenda setting. The chapter also reflects on some of the key governance implications of these arrangements in which global actors promote forms of evidence use – often under a banner of technical efficiency – with limited consideration for local representation or accountability

    The two sides of cytokine signaling and glaucomatous optic neuropathy

    Get PDF
    The mechanistic study of glaucoma pathogenesis has shifted to seeking to understand the effects of immune responses on retinal ganglion cell damage and protection. Cytokines are the hormonal factors that mediate most of the biological effects in both the immune and nonimmune systems. CD4-expressing T helper cells are a major source of cytokine production and regulation. Type 1 helper T (Th1) cells are characterized by the production of proinflammatory cytokines such as interferon-gamma, interleukin (IL)-2, IL-12, IL-23, and tumor necrosis factor-alpha while type 2 helper T (Th2) cells are characterized by the production of IL-4, IL-5, IL-6, and IL-10. The balance of Th1/Th2 cytokine production influences many pathological processes and plays both causative and protective roles in neuron damages. Growing evidence indicates that imbalances of Th1/Th2 cytokine production are involved in neural damage or protection in many neurological diseases. In this review, we discuss the possible roles of Th1/Th2 cytokine production and imbalance of Th1/Th2 cytokines in retina, especially glaucomatous optic neuropathy
    corecore