21 research outputs found

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Application of an electronic nose coupled with fuzzy-wavelet network for the detection of meat spoilage

    Get PDF
    Food product safety is one of the most promising areas for the application of electronic noses. During the last twenty years, these sensor-based systems have made odour analyses possible. Their application into the area of food is mainly focused on quality control, freshness evaluation, shelf-life analysis and authenticity assessment. In this paper, the performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillets stored either aerobically or under modified atmosphere packaging, at different storage temperatures. A novel multi-output fuzzy wavelet neural network model has been developed, which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modelling approach is not only to classify beef samples in the relevant quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population. Comparison results against advanced machine learning schemes indicated that the proposed modelling scheme could be considered as a valuable detection methodology in food microbiology
    corecore