8 research outputs found

    Successive Cambia in the mangrove <i>Avicennia</i>: A study on the three-dimensional structure of the Cambia and the functioning of the internal phloem tissue

    Get PDF
    Mangrove forests grow in conditions which must be considered extreme for woody angiosperms: high and changing salinity, frequent inundation with associated hypoxia, low relative humidity of the air and high temperatures. As ‘marine formations’, mangrove ecosystems are characteristic for the intertidal area of estuaries, creeks, sheltered bays and coastlines in tropical and sub-tropical areas worldwide. The genus Avicennia has been shown to be eurytopic as regards the above mentioned environmental conditions. Locally, Avicennia can often be found at the seaward as well as at the landward side (Disjunct zonation pattern) of the mangrove forest, sites with highly contrasting environmental conditions, while globally it has the largest latitudinal range in both the Eastern and the Western biogeographic mangrove regions (i.e. Indo-West Pacific and East Africa vs. America and West Africa respectively). The question is how Avicennia copes with this large and varying range of environmental conditions? It already has been proven that the wood anatomy of Avicennia is especially adapted to harsh environmental conditions. Properties of the wood (transport tissues) were suggested to be adapted to reduce cavitation events, defined as air bubble formation in the xylem sap. Inside vessels, those air bubbles can enlarge and therewith block the water transport (i.e. vessel embolism) so that cavitation and subsequent embolism is highly influencing the functionality of the hydraulic system. Amongst mangrove trees, the genus Avicennia L. (Acanthaceae) stands out by its successive cambia (i.e. having not one cambial layer but subsequent active cambia possibly conferring many sites of active growth in the stem). Secondary growth by successive cambia can offer Avicennia ecological advantages since (1) the internal phloem tissue can store water that could be used in refilling air-filled vessels with water and (2) the special, patchy growth can offer the tree woody tissue that is well-adapted to the conditions of the moment. In this study we investigate the organization of the successive cambia in Avicennia in three dimensions in order to complete the already investigated three dimensional network of transport tissues (phloem and xylem). Small stems (max. diameter: 3 cm) and branches of Avicennia marina (Forssk.) Vierh. and A. officinalis L. were sampled from the Rekawa lagoon in Sri Lanka, where the two species encounter spatially and temporally varying conditions as regards salinity, inundation. Serial sections and microscopic observation of the samples allow the reconstruction and visualization of the three-dimensional organization of the successive cambia. The working hypothesis of the research is: ‘successive cambia are important for Avicennia to survive in extreme high environmental conditions and explains the genus eurytopic nature as compared to other mangrove genera’

    Island-wide coastal vulnerability assessment of Sri Lanka reveals that sand dunes, planted trees and natural vegetation may play a role as potential barriers against ocean surges

    Get PDF
    Since the Indian Ocean tsunami on 26 December 2004, there have been continuous efforts to upgrade the (tsunami) early warning systems as well as their accessibility in local and regional places in South and Southeast Asia. Meanwhile, the protection offered by coastal vegetation like mangroves to the people, property and physical landscape was also recognized and prioritized by both public and private authorities at various governance levels. As more than 90% of the Sri Lankan coastline is vulnerable to water-related impacts and existing bioshields like mangroves are potentially able to protect less than one-third of it, if at all they are in good condition, an attempt was made to build knowledge on the other potential natural barriers along the coast. In this context, a ca. 2 km belt of the entire coast was digitized, classified and assessed for vulnerability in relation to the existing land- use/cover. First, a visually interpreted land-use/cover map comprising 16 classes was developed using Google Earth imagery (Landsat-5, 2003). Second, based on the Global Digital Elevation Model data from the ASTER satellite, the land-use/cover map was further re-classified for elevation demarcation into waterless, run-up and flooded areas. And finally, both vulnerable and less vulnerable areas were identified by taking into account the average wave heights that the 2004 tsunami reached in the country (North: 5.5 m, South: 7 m, East: 5 m and West: 3.75 m). Among the selected areas studied, Jaffna and Kaluvanchikudy-Komari are found to be vulnerable and, Trincomalee, Yala and Puttalam are less vulnerable. While vulnerability was largely associated with the conditions devoid of natural barriers, the less vulnerable areas had mangroves, Casuarina, dense vegetation and/or sand dunes as land cover, all of which might prove effective against ocean surges. However, these land cover types should never be considered as providing full protection against the type of threats that can be expected. As the present study provides only baseline information on island-wide vulnerability of areas to water-related impacts, further investigation and validation along similar research lines are needed to establish a blueprint for future preparedness. (c) 2017 The Authors. Published by Elsevier B.V

    Evaluating the local use of mangroves as a source firewood in Sri Lanka

    Get PDF
    info:eu-repo/semantics/publishedHexennial International Conference ‘Meeting on Mangrove ecology, functioning and Management – MMM3’, 2-6 juillet, Galle, Sri Lank

    Successive cambia in the mangrove Avicennia: a study on the three-dimensional structure of the cambia and the functioning of the internal phloem tissue

    No full text
    Présentation avec posterinfo:eu-repo/semantics/publishedYoung Marine Scientists’ Day Vlaams Instituut voor de Zee (VLIZ), 25 février, Brugge, Belgiqu

    Assessing the Influence of Anthropogenic Land-Use Changes on Bird Diversity and Feeding Guilds:A Case Study of Kalametiya Lagoon (Southern Sri Lanka)

    No full text
    Kalametiya Lagoon, a highly threatened Sri Lankan wetland, has undergone drastic hydrological changes in recent decades, due to an upstream irrigation project. These changes led to the invasion of the lagoon water by monospecific Sonneratia caseolaris mangrove stands and Typha angustifolia reedbeds. As Kalametiya has been a nationally recognized bird sanctuary since 1984, this invasion is expected to have brought significant changes upon local avifauna. Therefore, this study aimed at determining the lagoon’s current bird diversity and distribution in relation with habitat types and environmental variables. Thirty-seven point-count stations were studied, between January and April 2022. Seventy-nine bird species, including four endemic and ten nationally threatened species, were encountered during the study period. Invertebrate feeders and polyphages were the richest and most diverse guilds. Bird communities were also found richer and more diverse in T. angustifolia reedbeds than in S. caseolaris mangroves. As feeding guild composition was significantly influenced by several environmental variables (i.e., water nitrate content, water TDS, water pH, soil pH), guilds could have great potential as bioindicators of the ecosystem if further studies are done to explore these relationships. Considering the important bird diversity found in the new habitats, this research brings additional proof that a management aiming at restoring the lagoon to its past state would bring significant changes to its avifaunal community. These changes could, in the future, be more precisely defined by a thorough comparison with past inventories of the lagoon’s bird community.</p
    corecore