10 research outputs found

    On Testing Dependence between Time to Failure and Cause of Failure when Causes of Failure Are Missing

    Get PDF
    The hypothesis of independence between the failure time and the cause of failure is studied by using the conditional probabilities of failure due to a specific cause given that there is no failure up to certain fixed time. In practice, there are situations when the failure times are available for all units but the causes of failures might be missing for some units. We propose tests based on U-statistics to test for independence of the failure time and the cause of failure in the competing risks model when all the causes of failure cannot be observed. The asymptotic distribution is normal in each case. Simulation studies look at power comparisons for the proposed tests for two families of distributions. The one-sided and the two-sided tests based on Kendall type statistic perform exceedingly well in detecting departures from independence

    Pairing in nuclear systems: from neutron stars to finite nuclei

    Full text link
    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We focus on the links between many-body pairing as it evolves from the underlying nucleon-nucleon interaction and the eventual experimental and theoretical manifestations of superfluidity in infinite nuclear matter and of pairing in finite nuclei. We analyse the nature of pair correlations in nuclei and their potential impact on nuclear structure experiments. We also describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. Finally, we discuss recent investigations of ground-state properties of random two-body interactions where pairing plays little role although the interactions yield interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern Physic
    corecore