7 research outputs found

    Effect of bulk viscosity on Elliptic Flow near QCD phase transition

    Full text link
    Effects of the bulk viscosity on the elliptic flow are studied. To introduce a realistic equation of state and transport coefficients, we apply the results of the lattice QCD and hadron resonance gas calculations for these quantities. We found that the bulk viscosity acts in a non trivial manner on the elliptic flow v2v_{2}. The reduction of v2v_{2} is more effective at low pTp_{T} compared to the case of shear viscosity, whereas at high pTp_{T}, the situation is reversed, leading to v2v_{2} enhancement. We argue that this is caused by the competition of the critical behaviors of the equation of state and the transport coefficients. We further found that Grad's method with the 14 moments approximation is not applicable to estimate the viscous effects for the one-particle distribution function at the freeze out.Comment: 14 pages, 12 figure

    New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    Full text link
    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200

    Relativistic Dissipative Hydrodynamics: A Minimal Causal Theory

    Get PDF
    We present a new formalism for the theory of relativistic dissipative hydrodynamics. Here, we look for the minimal structure of such a theory which satisfies the covariance and causality by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). It can readily be applied to the full three-dimensional hydrodynamical calculations. We apply our formalism to the Bjorken model and the results are shown to be analogous to the IS.Comment: 25 pages, 2 figures, Phys. Rev. C in pres

    Nearly Perfect Fluidity: From Cold Atomic Gases to Hot Quark Gluon Plasmas

    Full text link
    Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity eta to entropy density s in units of hbar/k_B is bounded by a constant. Here, hbar is Planck's constant and k_B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that eta/s is greater or equal to hbar/(4 pi k_B). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of eta/s that are smaller than hbar/k_B. These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases, and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory, and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.Comment: 76 pages, 11 figures, review article, extensive revision
    corecore