193 research outputs found

    Multiple sensor-based weed segmentation

    Full text link
    Bidens pilosa L (commonly known as cobbler's peg) is an annual broad-leaf weed in tropical and subtropical regions and reportedly needs to be identified and eliminated when farming 31 different crop varieties. This paper presents a multi-modal sensing approach for detecting Bidens leaves within wheat plants. Visual cue-based automatic discrimination of Bidens and wheat leaves is non-trivial owing to the curled-up nature of the wheat leaves. Therefore, spectral responses of Bidens and wheat leaves are first analysed to understand the discriminative spectral bands. Then a multi-modal sensory system consisting of a near infra red (NIR) and a visual camera set-up is proposed. Information retrieved from the sensory set up is then processed to generate a series of cues that are fed into a classification algorithm. Classification results are validated through experimentation. The proposed technique is able to achieve an accuracy of 88-95 per cent even when there is substantial overlapping between Bidens and wheat leaves. Further, it is also shown that the algorithm is robust enough to discriminate some other commonly available plant species

    Active visual object search using affordance-map in real world: A human-centric approach

    Full text link
    © 2014 IEEE. Human context is the most natural explanation why objects are placed and arranged in a particular order in an indoor environment. Usually, humans arrange objects in order to support their intended activities in a given environment. However, most of the common approaches for robotic object search involve modelling object-object relationships. In this paper, we hypothesize such relationships are centered around humans and bring human context to object search by modelling human-objects relationships through affordance-map. It identifies locations in a 3D map which support a particular affordance using virtual human models. Therefore, our approach does not require to observe real humans in the scene. The affordance-map and object-human-robot relationship are then used to infer the object search strategy. We tested our algorithm using a mobile robot that actively searched for the object 'computer monitors' in an office environment with promising results

    Towards generalization of semi-supervised place classification over generalized Voronoi graph

    Full text link
    With the progress of human-robot interaction (HRI), the ability of a robot to perform high-level tasks in complex environments is fast becoming an essential requirement. To this end, it is desirable for a robot to understand the environment at both geometric and semantic levels. Therefore in recent years, research towards place classification has been gaining in popularity. After the era of heuristic and rule-based approaches, supervised learning algorithms have been extensively used for this purpose, showing satisfactory performance levels. However, most of those approaches have only been trained and tested in the same environments and thus impede a generalized solution. In this paper, we have proposed a semi-supervised place classification over a generalized Voronoi graph (SPCoGVG) which is a semi-supervised learning framework comprised of three techniques: support vector machine (SVM), conditional random field (CRF) and generalized Voronoi graph (GVG), in order to improve the generalizability. The inherent problem of training CRF with partially labeled data has been solved using a novel parameter estimation algorithm. The effectiveness of the proposed algorithm is validated through extensive analysis of data collected in international university environments. © 2013 Elsevier B.V. All rights reserved

    Spatial prediction in mobile robotic wireless sensor networks with network constraints

    Full text link
    © 2016 IEEE. In recent years mobile robotic wireless sensor networks have been a popular choice for modelling spatial phenomena. This research is highly demanding and non-trivial due to challenges from both network and robotic aspects. In this paper, we address the spatial modelling of a physical phenomena with the network connectivity constraints while the mobile robots are striving to achieve the minimum modelling mismatch in terms of root mean square error (RMSE). We have resolved it through Gauss markov random field based approach which is a computationally efficient implementation of Gaussian processes. In this strategy, the Mobile Robotic Wireless Sensor Node (MRWSN) are centrally controlled to maintain the connectivity while minimizing the RMSE. Once the number of MRWSNs reach their maximum coverage, a new MRWSN is requested at the most informative location. The experimental results are convincing and they show the effectiveness of the algorithm

    Analytical model and data-driven approach for concrete moisture prediction

    Full text link
    The advent of smart sensing technologies has opened up new avenues for addressing the billion dollar problem in the wastewater industry of H2S corrosion in concrete sewer pipes, where there is a growing interest in monitoring the environmental properties that govern the rate of corrosion. In this context, this paper proposes a methodology to predict the moisture content of concretes through data-driven approach by using Gaussian Process Regression modeling. The experimental program in this study practices measurements during wetting and drying phases of concrete. The obtained moisture data is used to train the prediction model against interpreted electrical resistivity data. The data of analytical model formulated from Archie's Law is then analyzed with experimental and Gaussian Process prediction data

    Robot path planning in a social context

    Full text link
    Human robot interaction has attracted significant attention over the last couple of years. An important aspect of such robotic systems is to share the working space with humans and carry out the tasks in a socially acceptable way. In this paper, we address the problem of fusing socially acceptable behaviours into robot path planning. By observing an environment for a while, the robot learns human motion patterns based on sampled Hidden Markov Models and utilises them in a Probabilistic Roadmap based path planning algorithm. This will minimise the social distractions, such as going through someone else's working space (due to the shortest path), by planning the path through minimal distractions, leading to human-like behaviours. The algorithm is implemented in Orca/C++ with appealing results in real world experiments. ©2010 IEEE

    Affordance-map: Mapping human context in 3D scenes using cost-sensitive SVM and virtual human models

    Full text link
    © 2015 IEEE. Robots are often required to operate in environments where humans are not present, but yet require the human context information for better human robot interaction. Even when humans are present in the environment, detecting their presence in cluttered environments could be challenging. As a solution to this problem, this paper presents the concept of affordance-map which learns human context by looking at geometric features of the environment. Instead of observing real humans to learn human context, it uses virtual human models and their relationships with the environment to map hidden human affordances in 3D scenes. The affordance-map learning problem is formulated as a multi label classification problem that can be learned using cost-sensitive SVM. Experiments carried out in a real 3D scene dataset recorded promising results and proved the applicability of affordance-map for mapping human context

    Models of motion patterns for mobile robotic systems

    Full text link
    Human robot interaction is an emerging area of research with many challenges. Knowledge about human behaviors could lead to more effective and efficient interactions of a robot in populated environments. This paper presents a probabilistic framework for the learning and representation of human motion patterns in an office environment. It is based on the observation that most human trajectories are not random. Instead people plan trajectories based on many considerations, such as social rules and path length. Motion patterns are learned using an incrementally growing Sampled Hidden Markov Model. This model has a number of interesting properties which can be of use in many applications. For example, the learned knowledge can be used to predict motion, infer social rules, thus improve a robot's operation and its interaction with people in a populated space. The proposed learning method is extensively validated in real world experiments. ©2010 IEEE

    Road terrain type classification based on laser measurement system data

    Full text link
    For road vehicles, knowledge of terrain types is useful in improving passenger safety and comfort. The conventional methods are susceptible to vehicle speed variations and in this paper we present a method of using Laser Measurement System (LMS) data for speed independent road type classification. Experiments were carried out with an instrumented road vehicle (CRUISE), by manually driving on a variety of road terrain types namely Asphalt, Concrete, Grass, and Gravel roads at different speeds. A looking down LMS is used for capturing the terrain data. The range data is capable of capturing the structural differences while the remission values are used to observe anomalies in surface reflectance properties. Both measurements are combined and used in a Support Vector Machines Classifier to achieve an average accuracy of 95% on different road types

    Validated ground penetrating radar simulation model for estimating rebar location in infrastructure monitoring

    Full text link
    © 2017 IEEE. Biogenic sulphide corrosion of reinforced concrete sewer pipes is an ongoing problem for wastewater governing bodies. Ensuring Workplace Health and Safety (WHS) is also an issue due to the harsh nature of sewer environments. As such, research into technologies that allow for automatic unmanned site assessments are of major priority to wastewater managing utilities. The use of Ground Penetrating Radar (GPR) is currently being investigated for it's ability to provide subsurface images. However, the GPR technology has not been tested and validated in harsh sewer environments. It is anticipated that the GPR interpretation can be hindered by low signal to noise ratio. As data driven machine learning techniques have proven to work in higly challenging data, our intenetion is to apply such techniques in GPR data processing. However, this is hindered by the lack of large amount of training data as it is prohibitively hard to collect such real experimental testing data. Thus, the aim of this study is to validate a ground penetrating radar simulation software, gprMax, and test it for suitability in generating realistic, big data sets with which to train the aforementioned data driven machine learning models supplemented with actual sewer crown data. The results of the study is the validation of the GPR simulator, tuned and able to generate reasonably realistic data. A novel concrete analog was also developed to allow for ease of testing of various parameters such as rebar cover depths and rebar spacing
    • …
    corecore