27,381 research outputs found

    Searching for the QCD Critical Point Using Particle Ratio Fluctuations and Higher Moments of Multiplicity Distributions

    Full text link
    Dynamical fluctuations in global conserved quantities such as baryon number, strangeness, or charge may be observed near a QCD critical point. Results from new measurements of dynamical K/Ď€K/\pi, p/Ď€p/\pi, and K/pK/p ratio fluctuations are presented. The commencing of a QCD critical point search at RHIC has extended the reach of possible measurements of dynamical K/Ď€K/\pi, p/Ď€p/\pi, and K/pK/p ratio fluctuations from Au+Au collisions to lower energies. The STAR experiment has performed a comprehensive study of the energy dependence of these dynamical fluctuations in Au+Au collisions at the energies sNN\sqrt{s_{NN}} = 7.7, 11.5, 39, 62.4, and 200 GeV. New results are compared to previous measurements and to theoretical predictions from several models. The measured dynamical K/Ď€K/\pi fluctuations are found to be independent of collision energy, while dynamical p/Ď€p/\pi and K/pK/p fluctuations have a negative value that increases toward zero at top RHIC energy. Fluctuations of the higher moments of conserved quantities (net-proton and net-charge) distributions, which are predicted to be sensitive to the presence of a critical point, are also presented.Comment: 4 pages, 2 figures, Proceedings of the 21st International Conference On Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy, France, May 23 - May 28, 201

    On the temperature dependence of correlation functions in the space like direction in hot QCD

    Full text link
    We study the temperature dependence of quark antiquark correlations in the space like direction. In particular, we predict the temperature dependence of space like Bethe-Salpeter amplitudes using recent Lattice gauge data for the space like string potential. We also investigate the effect of the space like string potential on the screening mass and discuss possible corrections which may arise when working with point sources.Comment: 15 pages 8 figures (not included, will be sent on request), (SUNY-NTG-94-3

    Off-diagonal disorder in the Anderson model of localization

    Full text link
    We examine the localization properties of the Anderson Hamiltonian with additional off-diagonal disorder using the transfer-matrix method and finite-size scaling. We compute the localization lengths and study the metal-insulator transition (MIT) as a function of diagonal disorder, as well as its energy dependence. Furthermore we investigate the different influence of odd and even system sizes on the localization properties in quasi one-dimensional systems. Applying the finite-size scaling approach in conjunction with a nonlinear fitting procedure yields the critical parameters of the MIT. In three dimensions, we find that the resulting critical exponent of the localization length agrees with the exponent for the Anderson model with pure diagonal disorder.Comment: 12 pages including 4 EPS figures, accepted for publication in phys. stat. sol. (b

    Expansion dynamics of a dipolar Bose-Einstein condensate

    Full text link
    Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar Bose gases. We report here the theoretical method used to interpret the measurement data as well as more details of the experiment and its analysis. The theory reported here is a tool for the investigation of different dynamical situations in time-dependent harmonic traps.Comment: 12 pages. Submitted to PR

    Investigation of Thin-Sheet Approaches to Simulate Beam Tube Losses

    Get PDF

    Phonon-affected steady-state transport through molecular quantum dots

    Full text link
    We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.Comment: 11 pages, 7 figures, FQMT11 Proceeding

    A universal ionization threshold for strongly driven Rydberg states

    Full text link
    We observe a universal ionization threshold for microwave driven one-electron Rydberg states of H, Li, Na, and Rb, in an {\em ab initio} numerical treatment without adjustable parameters. This sheds new light on old experimental data, and widens the scene for Anderson localization in light matter interaction.Comment: 4 pages, 1 figur
    • …
    corecore