21,599 research outputs found
Self-interaction errors in nuclear energy density functionals
When applied to a single nucleon, nuclear energy density functionals may
yield a non-vanishing internal energy thus implying that the nucleon is
interacting with itself. It is shown how to avoid this unphysical feature for
semi-local phenomenological functionals containing all possible bilinear
combinations of local densities and currents up to second order in the
derivatives. The method outlined in this Rapid Communication could be easily
extended to functionals containing higher order terms, and could serve as a
guide for constraining the time-odd part of the functional
Multispectral scanner optical system
An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam
Nonplanar integrability at two loops
In this article we compute the action of the two loop dilatation operator on
restricted Schur polynomials that belong to the su(2) sector, in the displaced
corners approximation. In this non-planar large N limit, operators that
diagonalize the one loop dilatation operator are not corrected at two loops.
The resulting spectrum of anomalous dimensions is related to a set of decoupled
harmonic oscillators, indicating integrability in this sector of the theory at
two loops. The anomalous dimensions are a non-trivial function of the 't Hooft
coupling, with a spectrum that is continuous and starting at zero at large N,
but discrete at finite N.Comment: version to appear in JHE
A double coset ansatz for integrability in AdS/CFT
We give a proof that the expected counting of strings attached to giant
graviton branes in AdS_5 x S^5, as constrained by the Gauss Law, matches the
dimension spanned by the expected dual operators in the gauge theory. The
counting of string-brane configurations is formulated as a graph counting
problem, which can be expressed as the number of points on a double coset
involving permutation groups. Fourier transformation on the double coset
suggests an ansatz for the diagonalization of the one-loop dilatation operator
in this sector of strings attached to giant graviton branes. The ansatz agrees
with and extends recent results which have found the dynamics of open string
excitations of giants to be given by harmonic oscillators. We prove that it
provides the conjectured diagonalization leading to harmonic oscillators.Comment: 33 pages, 3 figures; v2: references adde
Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region
The Particle-in-Cell (PIC) method was used to study two different ion
thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency
Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in
the discharge chamber due to the different magnetic field configurations.
Special attention was paid to the simulation of plasma particle fluxes on the
thrusters channel surfaces. In both cases, PIC proved itself as a powerful
tool, delivering important insight into the basic physics of the different
thruster concepts. The simulations demonstrated that the new HEMP thruster
concept allows for a high thermal efficiency due to both minimal energy
dissipation and high acceleration efficiency. In the HEMP thruster the plasma
contact to the wall is limited only to very small areas of the magnetic field
cusps, which results in much smaller ion energy flux to the thruster channel
surface as compared to SPT. The erosion yields for dielectric discharge channel
walls of SPT and HEMP thrusters were calculated with the binary collision code
SDTrimSP. For SPT, an erosion rate on the level of 1 mm of sputtered material
per hour was observed. For HEMP, thruster simulations have shown that there is
no erosion inside the dielectric discharge channel.Comment: 14 pages, 11 figures This work was presented at 21st International
Conference on Numerical Simulation of Plasmas (ICNSP'09
A stereoscopic ranging system using standard PC technology
A stereoscopic ranging system is currently being developed as a key source of positional information for an underwater ROV station keeping system. Advancements in PC technology make it possible to use a relatively simple image capture card and a PC as a platform for the fast capture and processing of video images. We make use of the extensive capabilities of fast data buses and the high processing power of fast PCs with Pentium II or III processors. Using this approach we are developing an image processing system that is largely manufacturer independent and promises a good path for both hardware and software upgrading in the future
Random access quantum information processors
Qubit connectivity is an important property of a quantum processor, with an
ideal processor having random access -- the ability of arbitrary qubit pairs to
interact directly. Here, we implement a random access superconducting quantum
information processor, demonstrating universal operations on a nine-bit quantum
memory, with a single transmon serving as the central processor. The quantum
memory uses the eigenmodes of a linear array of coupled superconducting
resonators. The memory bits are superpositions of vacuum and single-photon
states, controlled by a single superconducting transmon coupled to the edge of
the array. We selectively stimulate single-photon vacuum Rabi oscillations
between the transmon and individual eigenmodes through parametric flux
modulation of the transmon frequency, producing sidebands resonant with the
modes. Utilizing these oscillations for state transfer, we perform a universal
set of single- and two-qubit gates between arbitrary pairs of modes, using only
the charge and flux bias of the transmon. Further, we prepare multimode
entangled Bell and GHZ states of arbitrary modes. The fast and flexible
control, achieved with efficient use of cryogenic resources and control
electronics, in a scalable architecture compatible with state-of-the-art
quantum memories is promising for quantum computation and simulation.Comment: 7 pages, 5 figures, supplementary information ancillary file, 21
page
Solving Four Dimensional Field Theories with the Dirichlet Fivebrane
The realization of four dimensional super Yang-Mills theories in
terms of a single Dirichlet fivebrane in type IIB string theory is considered.
A classical brane computation reproduces the full quantum low energy effective
action. This result has a simple explanation in terms of mirror symmetry.Comment: Final version to appear in Phys. Rev.
Probing the mechanical unzipping of DNA
A study of the micromechanical unzipping of DNA in the framework of the
Peyrard-Bishop-Dauxois model is presented. We introduce a Monte Carlo technique
that allows accurate determination of the dependence of the unzipping forces on
unzipping speed and temperature. Our findings agree quantitatively with
experimental results for homogeneous DNA, and for -phage DNA we
reproduce the recently obtained experimental force-temperature phase diagram.
Finally, we argue that there may be fundamental differences between {\em in
vivo} and {\em in vitro} DNA unzipping
Pion-nucleon scattering in a meson-exchange model
The pi-N interaction is studied within a meson-exchange model and in a
coupled-channels approach which includes the channels pi-N, eta-N, as well as
three effective pi-pi-N channels namely rho-N, pi-Delta, and sigma-N. Starting
out from an earlier model of the Julich group systematic improvements in the
dynamics and in some technical aspects are introduced. With the new model an
excellent quantitative reproduction of the pi-N phase shifts and inelasticity
parameters in the energy region up to 1.9 GeV and for total angular momenta J
leq 3/2 is achieved. Simultaneously, good agreement with data for the total and
differential pi-N -> eta-N transition cross sections is obtained. The
connection of the pi_N dynamics in the S_{11} partial wave with the reaction
pi-N -> eta-N is discussed.Comment: 32 pages, 9 figure
- …