341 research outputs found

    Divergent role of nitric oxide in insulin‐stimulated aortic vasorelaxation between low‐ and high‐intrinsic aerobic capacity rats

    Full text link
    Low‐intrinsic aerobic capacity is associated with increased risk for cardiovascular and metabolic diseases and is a strong predictor of early mortality. The effects of intrinsic aerobic capacity on the vascular response to insulin are largely unknown. We tested the hypothesis that rats selectively bred for a low capacity to run (LCR) exhibit vascular dysfunction and impaired vascular reactivity to insulin compared to high capacity running (HCR) rats. Mature female LCR (n = 21) and HCR (n = 17) rats were maintained under sedentary conditions, and in vitro thoracic aortic vascular function was assessed. LCR exhibited greater body mass (13%), body fat (35%), and subcutaneous, perigonadal, and retroperitoneal adipose tissue mass, than HCR. During an intraperitoneal glucose tolerance test, glucose area under the curve (AUC) was not different but insulin AUC was 2‐fold greater in LCR than HCR. Acetylcholine and insulin‐stimulated aortic vasorelaxation was significantly greater in LCR (65.2 ± 3.8%, and 32.7 ± 4.1%) than HCR (55.0 ± 3.3%, and 16.7 ± 2.8%). Inhibition of nitric oxide synthase (NOS) with L‐NAME entirely abolished insulin‐mediated vasorelaxation in the aorta of LCR, with no effect in HCR. LCR rats exhibited greater expression of Insulin Receptor protein, lower Endothelin Receptor‐A protein, a down‐regulation of transcripts for markers of immune cell infiltration (CD11C, CD4, and F4/80) and up‐regulation of pro‐atherogenic inflammatory genes (VCAM‐1 and MCP‐1) in the aorta wall. Contrary to our hypothesis, low‐aerobic capacity was associated with enhanced aortic endothelial function and NO‐mediated reactivity to insulin, despite increased adiposity and evidence of whole body insulin resistance.Rats selectively bred for low‐aerobic capacity displayed enhanced aortic endothelial function and nitric oxide‐mediated insulin‐stimulated vasorelaxation, despite increased adiposity and evidence of whole body insulin resistance. The vascular reactivity to insulin in high‐intrinsic aerobic capacity rats was independent of nitric oxide. Our findings demonstrate that endothelial and nitric oxide insulin‐mediated vasomotor function in the rat aorta is not always associated with aerobic capacity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112223/1/phy212459.pd

    The “E3D+VET” Erasmus+ project: Interdisciplinary teaching and learning in VET centres through 3D printing

    Get PDF
    The "E3D+VET" (Erasmus+ for the immersion in 3D printing of VET centres) is an Erasmus+ KA2 project aimed at developing educational resources for the VET system, providing new competences to both teachers and students and serving as important means of innovation and acquisition of effective knowledge on interdisciplinary STEAM topics. The project started on October 2017 and it will last up to the end of March 2020. In this work, we present the main outcomes from the project activities carried out so far. In particular, after a description of the general objectives of the project, we introduce the methodology developed for making 3D-printing a valuable resource for supporting physics teaching in a highly motivating learning environment and three didactical exercises as examples of 3D-printing based tools that can support teachers in their physics class. As a part of the project plan, here we finally present the preliminary training program specifically designed for the teacher professional development about the knowledge of 3D-printing potential for an effective teaching of physics contents and, at the same time, for improving student transversal abilities

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex

    Get PDF
    Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 ÎŒM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 ÎŒM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity. Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 ÎŒM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 ÎŒM), indicating an involvement of system xc −. Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine

    CRISPR-Cas9 Mediated TSPO Gene Knockout alters Respiration and Cellular Metabolism in Human Primary Microglia Cells

    Get PDF
    The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. It has been implicated in the regulation of various cellular processes including oxidative stress, proliferation, apoptosis, and steroid hormone biosynthesis. Since the expression of TSPO in activated microglia is upregulated in various neuroinflammatory and neurodegenerative disorders, we set out to examine the role of TSPO in an immortalized human microglia C20 cell line. To this end, we performed a dual approach and used (i) lentiviral shRNA silencing to reduce TSPO expression, and (ii) the CRISPR/Cas9 technology to generate complete TSPO knockout microglia cell lines. Functional characterization of control and TSPO knockdown as well as knockout cells, revealed only low de novo steroidogenesis in C20 cells, which was not dependent on the level of TSPO expression or influenced by the treatment with TSPO-specific ligands. In contrast to TSPO knockdown C20 cells, which did not show altered mitochondrial function, the TSPO deficient knockout cells displayed a significantly decreased mitochondrial membrane potential and cytosolic Ca2+ levels, as well as reduced respiratory function. Performing the rescue experiment by lentiviral overexpression of TSPO in knockout cells, increased oxygen consumption and restored respiratory function. Our study provides further evidence for a significant role of TSPO in cellular and mitochondrial metabolism and demonstrates that different phenotypes of mitochondrial function are dependent on the level of TSPO expression

    NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity

    Full text link
    T cell-directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-Îł (IFN-Îł)-interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5-IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5-IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a+ NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5-IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-Îł-inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a+ CXCR6+ NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell-focused therapies and offer mechanistic insights into how T cell-NK cell-DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance

    NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity

    Get PDF
    T cell-directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-Îł (IFN-Îł)-interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5-IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5-IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a; +; NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5-IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-Îł-inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a; +; CXCR6; +; NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell-focused therapies and offer mechanistic insights into how T cell-NK cell-DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance

    Digenic Leigh syndrome on the background of the m.11778G>A Leber hereditary optic neuropathy variant

    Get PDF
    Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits
    • 

    corecore