328 research outputs found
Coupling to haloform molecules in intercalated C60?
For field-effect-doped fullerenes it was reported that the superconducting
transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br)
crystals, than for pure C60. Initially this was explained by the expansion of
the volume per C60-molecule and the corresponding increase in the density of
states at the Fermi level in the intercalated crystals. On closer examination
it has, however, turned out to be unlikely that this is the mechanism behind
the increase in Tc. An alternative explanation of the enhanced transition
temperatures assumes that the conduction electrons not only couple to the
vibrational modes of the C60-molecule, but also to the modes of the
intercalated molecules. We investigate the possibility of such a coupling. We
find that, assuming the ideal bulk structure of the intercalated crystal, both
a coupling due to hybridization of the molecular levels, and a coupling via
dipole moments should be very small. This suggests that the presence of the
gate-oxide in the field-effect-devices strongly affects the structure of the
fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication
Critical illness polyneuropathy in ICU patients is related to reduced motor nerve excitability caused by reduced sodium permeability
Background: Reduced motor and sensory nerve amplitudes in critical illness polyneuropathy (CIP) are characteristic features described in electrophysiological studies and due to dysfunction of voltage-gated sodium channels. Yet, faulty membrane depolarization as reported in various tissues of critically ill patients may cause reduced membrane excitability as well. The aim of this study was to compare the pathophysiological differences in motor nerve membrane polarization and voltage-gated sodium channel function between CIP patients and critically ill patients not developing CIP during their ICU stay (ICU controls).
Methods: ICU patients underwent electrophysiological nerve conduction studies and were categorized as either ICU controls or CIP patients. Subsequently, excitability parameters were recorded as current-threshold relationship, stimulus-response behavior, threshold electrotonus, and recovery of excitability from the abductor pollicis brevis following median nerve stimulation. Results: Twenty-six critically ill patients were enrolled and categorized as 12 ICU controls and 14 CIP patients. When compared to 31 healthy subjects, the ICU controls exhibited signs of membrane depolarization as shown by reduced superexcitability (p = 0.003), depolarized threshold electrotonus (p = 0.007), increased current-threshold relationship (p = 0.03), and slightly prolonged strength-duration time constant. In contrast, the CIP patients displayed a significantly reduced strength-duration time constant (p < 0.0001), which indicates an increased inactivation of voltage-gated sodium channels. Conclusions: Abnormal motor nerve membrane depolarization is a general finding in critically ill patients whereas voltage-gated sodium channel dysfunction is a characteristic of CIP patients
Life after charge noise: recent results with transmon qubits
We review the main theoretical and experimental results for the transmon, a
superconducting charge qubit derived from the Cooper pair box. The increased
ratio of the Josephson to charging energy results in an exponential suppression
of the transmon's sensitivity to 1/f charge noise. This has been observed
experimentally and yields homogeneous broadening, negligible pure dephasing,
and long coherence times of up to 3 microseconds. Anharmonicity of the energy
spectrum is required for qubit operation, and has been proven to be sufficient
in transmon devices. Transmons have been implemented in a wide array of
experiments, demonstrating consistent and reproducible results in very good
agreement with theory.Comment: 6 pages, 4 figures. Review article, accepted for publication in
Quantum Inf. Pro
Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions
We have studied superconductor/normal metal/superconductor (SNS) junctions
consisting of short Au or Cu wires between Nb or Al banks. The Nb based
junctions display inherent electron heating effects induced by the high thermal
resistance of the NS boundaries. The Al based junctions show in addition
subharmonic gap structures in the differential conductance dI/dV and a
pronounced peak in the excess noise at very low voltages V. We suggest that the
noise peak is caused by fluctuations of the supercurrent at the onset of
Josephson coupling between the superconducting banks. At intermediate
temperatures where the supercurrent is suppressed a noise contribution ~1/V
remains, which may be interpreted as shot noise originating from large multiple
charges.Comment: 7 pages, 7 figures, extended versio
Open Spinning Strings and AdS/dCFT Duality
We consider open spinning string solutions on an AdS_4 x S^2-brane (D5-brane)
in the bulk AdS_5 x S^5 background. By taking account of the breaking of
SO(6)_R to SO(3)_H x SO(3)_V due to the presence of the AdS-brane, the open
rotating string ansatz is discussed. We construct the elliptic folded/circular
open string solutions in the SU(2) and the SL(2) sectors, so that they satisfy
the appropriate boundary conditions. On the other hand, in the SU(2) sector of
the gauge theory, we compute the matrix of anomalous dimension of the defect
operator, which turns out to be the Hamiltonian of an open integrable spin
chain. Then we consider the coordinate Bethe ansatz with arbitrary number of
impurities, and compare the boundary condition of the Bethe wavefunction with
that of the corresponding open string solution. We also discuss the Bethe
ansatz for the open SL(2) spin chain with several supports from the string
theory side. Then, in both SU(2) and SL(2) sectors, we analyze the Bethe
equations in the thermodynamic limit and formulate the `doubling trick' on the
Riemann surface associated with the gauge theory.Comment: 1+50 pages, 7 figures, JHEP style, references adde
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
- …