272 research outputs found

    Systematic Errors in the Hubble Constant Measurement from the Sunyaev-Zel'dovich effect

    Full text link
    The Hubble constant estimated from the combined analysis of the Sunyaev-Zel'dovich effect and X-ray observations of galaxy clusters is systematically lower than those from other methods by 10-15 percent. We examine the origin of the systematic underestimate using an analytic model of the intracluster medium (ICM), and compare the prediction with idealistic triaxial models and with clusters extracted from cosmological hydrodynamical simulations. We identify three important sources for the systematic errors; density and temperature inhomogeneities in the ICM, departures from isothermality, and asphericity. In particular, the combination of the first two leads to the systematic underestimate of the ICM spectroscopic temperature relative to its emission-weighed one. We find that these three systematics well reproduce both the observed bias and the intrinsic dispersions of the Hubble constant estimated from the Sunyaev-Zel'dovich effect.Comment: 26 pages, 7 figures, accepted for publication in ApJ, Minor change

    Submillimeter detection of the Sunyaev -- Zel'dovich effect toward the most luminous X-ray cluster at z=0.45

    Full text link
    We report on the detection of the Sunyaev -- Zel'dovich (SZ) signals toward the most luminous X-ray cluster RXJ1347-1145 at Nobeyama Radio Observatory (21 and 43 GHz) and at James Clerk Maxwell Telescope (350 GHz). In particular the latter is the first successful detection of the SZ temperature increment in the submillimeter band which resolved the profile of a cluster of galaxies. Both the observed spectral dependence and the radial profile of the SZ signals are fully consistent with those expected from the X-ray observation of the cluster. The combined analysis of 21GHz and 350GHz data reproduces the temperature and core-radius of the cluster determined with the ROSAT and ASCA satellites when we adopt the slope of the density profile from the X-ray observations. Therefore our present data provide the strongest and most convincing case for the detection of the submillimeter SZ signal from the cluster, as well as in the Rayleigh -- Jeans regime. We also discuss briefly the cosmological implications of the present results.Comment: 11 pages, The Astrophysical Journal (Letters), in pres

    TGF-β1 and serum both stimulate contraction but differentially affect apoptosis in 3D collagen gels

    Get PDF
    Apoptosis of fibroblasts may be key for the removal of cells following repair processes. Contraction of three-dimensional collagen gels is a model of wound healing and remodeling. Here two potent inducers of contraction, TGF-β1 and fetal calf serum (FCS) were evaluated for their effect on fibroblast apoptosis in contracting collagen gels. Human fetal lung fibroblasts were cultured in floating type I collagen gels, exposed to TGF-β1 or FCS, and allowed to contract for 5 days. Apoptosis was evaluated using TUNEL and confirmed by DNA content profiling. Both TGF-β1 and serum significantly augmented collagen gel contraction. TGF-β1 also increased apoptosis assessed by TUNEL positivity and DNA content analysis. In contrast, serum did not affect apoptosis. TGF-β1 induction of apoptosis was associated with augmented expression of Bax, a pro-apoptotic member of the Bax/Bcl-2 family, inhibition of Bcl-2, an anti-apoptotic member of the same family, and inhibition of both cIAP-1 and XIAP, two inhibitors of the caspase cascade. Serum was associated with an increase in cIAP-1 and Bcl-2, anti-apoptotic proteins. Interestingly, serum was also associated with an apparent increase in Bax, a pro-apoptotic protein. Blockade of Smad3 with either siRNA or by using murine fibroblasts deficient in Smad3 resulted in a lack of TGF-β induction of augmented contraction and apoptosis. Contraction induced by different factors, therefore, may be differentially associated with apoptosis, which may be related to the persistence or resolution of the fibroblasts that accumulate following injury

    Impact of Chandra calibration uncertainties on galaxy cluster temperatures: application to the Hubble Constant

    Full text link
    We perform a uniform, systematic analysis of a sample of 38 X-ray galaxy clusters with three different Chandra calibrations. The temperatures change systematically between calibrations. Cluster temperatures change on average by roughly ~6% for the smallest changes and roughly ~13% for the more extreme changes between calibrations. We explore the effects of the changing cluster spectral properties on Sunyaev-Zel'dovich effect (SZE) and X-ray determinations of the Hubble constant. The Hubble parameter changes by +10% and -13% between the current calibration and two previous Chandra calibrations, indicating that changes in the cluster temperature basically explain the entire change in H_0. Although this work focuses on the difference in spectral properties and resultant Hubble parameters between the calibrations, it is intriguing to note that the newer calibrations favor a lower value of the Hubble constant, H_0 ~ 60 km s-1 Mpc-1, typical of results from SZE/X-ray distances. Both galaxy clusters themselves and the details of the instruments must be known precisely to enable reliable precision cosmology with clusters, which will be feasible with combined efforts from ongoing observations and planned missions and observatories covering a wide range of wavelengths.Comment: 18 pages, 5 figures; updated to match published versio

    Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia

    Get PDF
    Background: Loss of adenomatous polyposis coli (APC) gene function results in constitutive activation of the canonical Wnt pathway and represents the main initiating and rate-limiting event in colorectal tumorigenesis. APC is likely to participate in a wide spectrum of biological functions via its different functional domains and is abundantly expressed in the brain as well as in peripheral tissues. However, the neuronal function of APC is poorly understood. To investigate the functional role of Apc in the central nervous system, we analyzed the neurological phenotypes of Apc 1638T/1638T mice, which carry a targeted deletion of the 3′ terminal third of Apc that does not affect Wnt signaling. Results: A series of behavioral tests revealed a working memory deficit, increased locomotor activity, reduced anxiety-related behavior, and mildly decreased social interaction in Apc 1638T/1638T mice. Apc 1638T/1638T mice showed abnormal morphology of the dendritic spines and impaired long-term potentiation of synaptic transmission in the hippocampal CA1 region. Moreover, Apc 1638T/1638T mice showed abnormal dopamine and serotonin distribution in the brain. Some of these behavioral and neuronal phenotypes are related to symptoms and endophenotypes of schizophrenia. Conclusions: Our results demonstrate that the C-terminus of the Apc tumor suppressor plays a critical role in cognitive and neuropsychiatric functioning. This finding suggests a potential functional link between the C-terminus of APC and pathologies of the central nervous system
    corecore