27 research outputs found

    Gamma knife radiosurgery of craniopharyngioma: results of 30 cases treated at Nagoya Radiosurgery Center

    No full text
    Evaluation of 30 cases of craniopharyngioma treated by Gamma Knife at Nagoya Radiosurgery Center (NRC), Nagoya Kyoritsu Hospital since July, 2004 has been made. The mean volume of the tumor was 2.64 ml, which was treated with the marginal dose of 11.7 Gy. Mean follow-up period was 79.9 months. The effects were evaluated by MRI findings, neuro-endocrine and hypothalamic signs and symptoms, complications and KPS every 3~6 months. As the results, complete remission was obtained in 8, partial remission in 12, no change in 6, progression in 3, in which two died by hypothalamic invasion. Tumor response rate was 68.9% and control rate 87.9%. Actuarial survival was 96% at 5 and 86% at 10 years. However, progression free survival was 76% and 76%, respectively. Using marginal dose of 11.7Gy to a smaller tumor, better control without complications has been obtained. KPS was excellent in 14, good in 9, fair in 2, poor in 1 and unknown in a case. Finally, there were three deaths, where two were died of tumor progression and one by infirmity. The progression of hypothalamic symptoms other than diabetes insipidus were found in two cases. Volume reduction and effective dose setting will be important for the improvement of QOL and survival after combined microsurgery and radiosurgery of craniopharyngioma

    σ-Bond Hydroboration of Cyclopropanes

    No full text
    Hydroboration of alkenes is a classical reaction in organic synthesis, in which alkenes react with boranes to give alkylboranes, with subsequent oxidation resulting in alcohols. The double bond (π-bond) of alkenes can be readily reacted with boranes owing to its high reactivity. However, the single bond (σ-bond) of alkanes has never been reacted. To pursue the development of σ-bond cleavage, we selected cyclopropanes as model substrates since they present a relatively weak σ-bond. Herein, we describe an iridium-catalyzed hydroboration of cyclopropanes, resulting in β-methyl alkylboronates. These unusually branched boronates can be derivatized by oxidation or cross-coupling chemistry, accessing “designer” products that are desired by practitioners of natural product synthesis and medicinal chemistry. Furthermore, mechanistic investigations and theoretical studies revealed the enabling role of the catalyst
    corecore