6 research outputs found

    Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bite of spiders belonging to the genus <it>Loxosceles </it>can induce a variety of clinical symptoms, including dermonecrosis, thrombosis, vascular leakage, haemolysis, and persistent inflammation. In order to examine the transcripts expressed in venom gland of <it>Loxosceles laeta </it>spider and to unveil the potential of its products on cellular structure and functional aspects, we generated 3,008 expressed sequence tags (ESTs) from a cDNA library.</p> <p>Results</p> <p>All ESTs were clustered into 1,357 clusters, of which 16.4% of the total ESTs belong to recognized toxin-coding sequences, being the Sphingomyelinases D the most abundant transcript; 14.5% include "possible toxins", whose transcripts correspond to metalloproteinases, serinoproteinases, hyaluronidases, lipases, C-lectins, cystein peptidases and inhibitors. Thirty three percent of the ESTs are similar to cellular transcripts, being the major part represented by molecules involved in gene and protein expression, reflecting the specialization of this tissue for protein synthesis. In addition, a considerable number of sequences, 25%, has no significant similarity to any known sequence.</p> <p>Conclusion</p> <p>This study provides a first global view of the gene expression scenario of the venom gland of <it>L. laeta </it>described so far, indicating the molecular bases of its venom composition.</p

    Aspects of gene regulation in the diploid and tetraploid Odontophrynus americanus (Amphibia, Anura, Leptodactylidae)

    No full text
    Erythropoietic and hemoglobin DNA transcriptional activities were analyzed in the diploid and the tetraploid Odontophrynus americanus. Flow cytometric analyses of DNA, RNA and mitochondrial contents showed increased genic activity in both diploid and tetraploid animals during erythropoiesis in vivo elicited by pretreatment phenylhydrazine. Generally, higher values were seen in immature tetraploid erythroid cells. On the 10th day of recovery from anemia, large amounts of messenger RNA were found in both specimens. Based on the mitochondrial content, the tetraploid cells had more intense energy metabolism than the diploid cells. Diploid O. americanus had about three times more erythroid cells than tetraploid specimens, indicating that there were differences in the regulatory mechanisms of erythroid cells. Hematological parameters showed that tetraploid cells had 30% more hemoglobin than the diploid, suggesting a regulatory mechanism of hemoglobin synthesis at the transcriptional level. Cytoplasmic inclusions resembling Heinz bodies were found in both types of cells. In the tetraploid cells they were previously found associated with RNA or RNP, suggesting that other regulatory system which controls the accumulation of nontranslated RNA transcribed in excess must be present. These differences at the physiological and molecular levels during erythropoiesis reinforce the hypothesis that speciation is occurring between diploid and tetraploid O. americanus

    Profiling the resting venom gland of the scorpion <it>Tityus stigmurus</it> through a transcriptomic survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scorpion <it>Tityus stigmurus</it> is widely distributed in Northeastern Brazil and known to cause severe human envenoming, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the gene expression profile from the non-stimulated venom gland of <it>Tityus stigmurus</it> scorpion.</p> <p>Results</p> <p>A cDNA library was constructed and 540 clones were sequenced and grouped into 153 clusters, with one or more ESTs (expressed sequence tags). Forty-one percent of ESTs belong to recognized toxin-coding sequences, with transcripts encoding antimicrobial toxins (AMP-like) being the most abundant, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% of the transcripts encode “other possible venom molecules”, which correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%.</p> <p>Conclusions</p> <p>This investigation provides the first global view of gene expression of the venom gland from <it>Tityus stigmurus</it> under resting conditions. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or non yet described types of venom peptides and proteins from the Buthidae family.</p
    corecore