40 research outputs found

    Association of Pain History and Current Pain With Sagittal Spinal Alignment and Muscle Stiffness and Muscle Mass of the Back Muscles in Middle-aged and Elderly Women

    Get PDF
    [Study Design] A cross-sectional study. [Objective] To investigate the association of low back pain history (LBPH) and LBP with sagittal spinal alignment, stiffness assessed using ultrasonic shear wave elastography, and mass of the back muscle in community-dwelling middle-aged and elderly women. [Summary of Background Data] The association of LBPH and LBP with sagittal spinal alignment, stiffness, and mass of the back muscles remains unclear in middle-aged and elderly women. [Participants and Methods] The study comprised 19 asymptomatic middle-aged and elderly women [control (CTR) group], 16 middle-aged and elderly women with LBPH (LBPH group), and 23 middle-aged and elderly women with LBP (LBP group). Sagittal spinal alignment in the standing and prone positions (kyphosis angle in the thoracic spine, lordosis angle in the lumbar spine, and anterior inclination angle in the sacrum) was measured using a Spinal Mouse. The stiffness of the back muscles (lumbar erector spinae and multifidus) in the prone position was measured using ultrasonic shear wave elastography. The mass of the back muscles (thoracic and lumbar erector spinae, lumbar multifidus, and quadratus lumborum) was also measured. [Results] Multiple logistic regression analysis with a forward selection method showed that the stiffness of the lumbar multifidus muscle was a significant and independent factor of LBPH. The stiffness of the lumbar multifidus muscle was significantly higher in the LBPH group than in the CTR group. Multiple logistic regression analysis also indicated that lumbar lordosis angle in the standing position was a significant and independent factor of LBP. The lumbar lordosis angle was significantly smaller in the LBP group than in the CTR group. [Conclusions] Our results suggest that LBPH is associated with increased stiffness of the lumbar multifidus muscle in the prone position, and that LBP is associated with the decreased lumbar lordosis in the standing position in community-dwelling middle-aged and elderly women

    Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle

    Get PDF
    Background: Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Methods: Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. Results: The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. Conclusions: This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo

    Fluid and thermal characteristics of flow through rectangular and elliptical curved ducts under different gravity conditions

    No full text
    Active interaction between centrifugal and buoyancy forces in curved channel has been investigated numerically in different gravity condition. Given interaction makes the flow patterns fundamentally different with straight channels; nevertheless, either of these forces domination leads to a different vortices structure and heat transfer quality. Three-dimensional, incompressible, laminar model has been used to compare rectangular and elliptical cross-sections in different gravity conditions as local and average heat transfer discussed regarding vortices structure effect. Based on the discussion different cross section has been briefly compared and concluded in term of stability whereas gravity is subjected to variation

    Effects of shoulder position during static stretching on shear elastic modulus of biceps brachii muscle

    No full text
    Biceps brachii muscle consists of a long head (BBL) and a short head (BBS). Shortening the BBL and BBS causes tendinopathy of the intertubercular groove and coracoid process. Therefore, it is necessary to stretch the BBL and BBS separately. This study aimed to determine the positions where the BBL and BBS were most stretched, using shear wave elastography (SWE). Fifteen healthy young males participated in the study. The shear elastic moduli of the BBL and BBS of the non-dominant arm were measured using SWE. The measurement positions were the resting position (shoulder flexion and abduction 0°) and four stretching positions.. The elbow was extended, and the forearm was pronated in all positions. Statistical analysis was performed using Wilcoxon's signed-rank test to compare the shear elastic moduli between the resting and stretched limb positions. In addition, Wilcoxon's signed-rank test was used to compare shear elastic moduli between the stretching positions that were significantly different compared to the resting position.. Results show that for BBL and BBS, shear elastic moduli were significantly higher in the shoulder extension + external rotation and shoulder horizontal abduction + internal rotation positions than in the resting position. Moreover, the shear elastic modulus of the BBL was significantly higher in shoulder extension + external rotation than in shoulder horizontal abduction + internal rotation. In contrast, the shear elastic modulus of the BBS was significantly higher in shoulder horizontal abduction + internal rotation than in shoulder extension + external rotation. The BBL and BBS were effectively stretched by shoulder extension + external rotation and horizontal abduction + internal rotation

    Acute effect of electrical stimulation on the infraspinatus muscle using different types of muscle contractions and shoulder joint positions

    Get PDF
    BACKGROUND: Electrical stimulation (ES) is considered to be effective on infraspinatus muscle with functional decline and atrophy. However, it is not clear which parameters of ES e.g., types of muscle contractions and shoulder joint positions have good effects for inducing hypertrophy and increasing muscular strength. The purpose of this study was to determine the acute effects of ES in different types of muscle contractions and shoulder joint positions on the infraspinatus muscle by measuring the muscle swelling after ES. METHODS: Forty subjects were randomly assigned to one of five groups: an isometric contraction with maximum internal rotation (IR), an isometric contraction with neutral position of rotation (NEUT), an isometric contraction with maximum external rotation (ER), a concentric contraction (CONCEN), and a control (CON) group. Subjects in all groups except for the CON group received ES for 20 min. The CON group did not receive intervention. The muscle thicknesses of the superior and inferior infraspinatus were measured using ultrasonography before and immediately after a single ES intervention. RESULTS: Percentage change in muscle thickness of the inferior infraspinatus was greater in the IR and NEUT groups than the muscle thickness of the CON group; however, the muscle thickness of the superior infraspinatus did not differ significantly among the groups. CONCLUSIONS: The results of this study indicate that applying ES to the inferior infraspinatus muscle in an isometric contraction with the muscle in a stretched position is an effective method to induce greater muscle swelling

    Regional differential stretching of the pectoralis major muscle: An ultrasound elastography study

    Get PDF
    Pectoralis major (PMa) muscle injuries are becoming more prevalent, and their incidence differs among the PMa regions, i.e., the clavicular, sternal, and abdominal regions. Therefore, identifying the position for effectively lengthening each PMa region is critical in preventing PMa injuries. The purpose of this study was to determine the effective stretching position for each PMa region through shear wave elastography, which can indirectly assess individual muscle lengthening. Fifteen men participated in this study. Twelve stretching positions were compounded with shoulder abductions (45°, 90°, and 135°), pelvic rotation (with or without), shoulder external rotation (with or without), and shoulder horizontal abductions. The shear modulus of each PMa region was measured through shear wave elastography in the stretching positions mentioned above. At the clavicular region, the shear modulus was higher for three stretching positions: shoulder horizontal abduction at 45° abduction during pelvic rotation and shoulder external rotation, shoulder horizontal abduction at 90° abduction, and shoulder horizontal abduction at 90° abduction while considering shoulder external rotation. For the sternal region, the shear modulus was higher in two stretching positions: shoulder horizontal abduction at 90° abduction while adding external rotation, and combination of pelvic rotation and external rotation. For the abdominal region, the shear modulus was higher in the shoulder horizontal abduction at 135° abduction with pelvic and external rotation. These results indicated that the effective stretching position was different for each PMa region

    Effective stretching position for the posterior deltoid muscle evaluated by shear wave elastography

    No full text
    BACKGROUND: Deteriorated extensibility of the posterior deltoid muscle is one of the factors of posterior shoulder tightness, and improvement in its extensibility is needed. However, no study has investigated which shoulder positions effectively stretch the posterior deltoid muscle in vivo. The aim of this study was to verify the effective stretching position of the posterior deltoid muscle in vivo using shear wave elastography. METHODS: Fifteen healthy men participated in this study. The shear modulus of the posterior deltoid was measured at resting and 13 stretching positions: 60°, 90°, and 120° shoulder flexion; maximum shoulder flexion, horizontal adductions at 60°, 90°, and 120° shoulder flexion; internal rotations at 60°, 90°, and 120° shoulder flexion; and combinations of horizontal adduction with internal rotation at 60°, 90°, and 120° shoulder flexion. The shear moduli of each stretching position were compared to those of the rest. Then, among the stretching positions for which the shear modulus was significantly different from the rest, the shear moduli were compared using a three-way analysis of variance with repeated measures of the three factors-flexion, horizontal adduction, and internal rotation. RESULTS: The shear moduli in all stretching positions were significantly higher than those of the rest, except for maximum shoulder flexion. The three-way analysis of variance with repeated measures revealed significant main effects in flexion and horizontal adduction. Comparing the flexion angles, the shear modulus was significantly higher at 90° than that at 60° and 120°. The shear modulus with horizontal adduction was significantly higher than that without horizontal adduction. Moreover, a significant two-way interaction was found only at flexion and horizontal adduction. The shear modulus with horizontal adduction was significantly higher at all angles than that without horizontal adduction at each flexion angle. Comparing the flexion angles with horizontal adduction, the shear modulus was significantly higher at 90° than that at 60° and 120°. No significant three-way interactions were found. CONCLUSION: Shoulder flexion and horizontal adduction affected the extensibility of the posterior deltoid muscle, whereas the effect of shoulder internal rotation was limited. More precisely, maximal horizontal adduction at 90° shoulder flexion was the most effective stretching position for the posterior deltoid muscle
    corecore