22,940 research outputs found
Modeling of Euclidean braided fiber architectures to optimize composite properties
Three-dimensional braided fiber reinforcements are a very effective toughening mechanism for composite materials. The integral yarn path inherent to this fiber architecture allows for effective multidirectional dispersion of strain energy and negates delamination problems. In this paper a geometric model of Euclidean braid fiber architectures is presented. This information is used to determine the degree of geometric isotropy in the braids. This information, when combined with candidate material properties, can be used to quickly generate an estimate of the available load-carrying capacity of Euclidean braids at any arbitrary angle
Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions
We investigate the baryonic contributions to the dilepton yield in high
energy heavy ion collisions within the context of a transport model. The
relative contribution of the baryonic and mesonic sources are examined. It is
observed that most dominant among the baryonic channels is the decay of
N*(1520) and mostly confined in the region below the rho peak. In a transport
theory implementation we find the baryonic contribution to the lepton pair
yield to be small.Comment: 11 pages, 8 figure
Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions
We propose the enhancement of yield in heavy ion collisions at
RHIC and LHC as a novel signal for the existence of diquarks in the strongly
coupled quark-gluon plasma produced in these collisions as well as in the
. Assuming that stable bound diquarks can exist in the quark-gluon
plasma, we argue that the yield of would be increased by two-body
collisions between diquarks and quarks, in addition to normal
three-body collisions among , and quarks. A quantitative study of
this effect based on the coalescence model shows that including the
contribution of diquarks to production indeed leads to a
substantial enhancement of the ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics
(Chiral07), Nov. 13-16, 2007, Osaka, Japa
Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs
We analyse the model of stochastic re-acceleration of electrons, which are
emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then
into the Galactic halo, in order to explain the origin on nonthermal (radio and
gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for
re-acceleration in the halo is supplied by shocks generated by processes of
star accretion onto the central black hole. Numerical simulations show that
regions with strong turbulence (places for electron re-acceleration) are
located high up in the Galactic Halo about several kpc above the disk. The
energy of SNR electrons that reach these regions does not exceed several GeV
because of synchrotron and inverse Compton energy losses. At appropriate
parameters of re-acceleration these electrons can be re-accelerated up to the
energy 10E12 eV which explains in this model the origin of the observed radio
and gamma-ray emission from the FB. However although the model gamma-ray
spectrum is consistent with the Fermi results, the model radio spectrum is
steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma
outflow from the Galactic central regions are taken into account, then the
re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap
- …