13 research outputs found

    Stvaranje ultrafino zrnate (UFZ) strukture i mehanička svojstva sa intenzivnom plastičnom deformacijom (IPD)

    Get PDF
    Commercial pure cooper (99,9% Cu) was deformed by equal channel angular pressing (ECAP) using up to 10 passes, route C. The evolution of microstructure and fracture character were observed by OM, SEM and TEM. The mean grain size decreased with increasing deformation, after 10 passes to 100 – 300 nm. TEM analysis suggested the possible nanostructure formation mechanism by the formation of cellular structure in grains, forming of subgrains and then forming of high angle nanograins with random orientation. Fractures of ECAP Cu material after 10 passes had transcrystalline ductile character with dimple morphology.Trgovački čisti bakar (99,9%) deformiran je kanalnim kutnim prešanjem (KKP) do 10 provlaka-putanje. C. Razvitak mikrostrukture i karakter loma praćeno je sa OM, SEM i TEM. Veličina zrna se smanjuje povećanjem deformacije poslije 10 provlaka na 100-300 nm. TEM analiza ukazuje mogućnost nastajanja mehanizma nanostrukture stvaranjem celularne strukture u zrnima, nastanak subzrna i zatim obrazovanje nanozrna pod visokim kutem sa slučajnom orjentacijom. Lomovi KKP Cu materijala poslije 10 provlaka imali su transkristalni duktilni karakter sa jamičastom morfologijom

    Post SPD Material's Recovery in Thermal Exposition

    No full text
    The mechanical and thermo-physical properties of Cu-Cr-Zr alloys in dependence on processing conditions were studied. The processing conditions consisted of solution annealing at temperature of 1020°C for 60 min followed by water quenching. This was followed by one equal channel angular pressing pass carried out at ambient temperature, ageing treatment (TATT_{AT}∈ (20;480⟩°C, tATt_{AT}∈ ⟨30;150⟩ min) and cooling in water. The maximal strengthening effect coming from dislocations & grain size refinement & precipitation strengthening of ΔHV0.1=130 was achieved at TATT_{AT}=480°C and for tATt_{AT}=120 min. From differential scanning calorimetry analysis, two partial exothermal peaks were recognized and classified as major and minor, these peaks are used to determination the stored energy coming from recrystallization and precipitation (ΔHR\Delta H_R and ΔHP\Delta H_P). The maximal value in stored energy of H1×ECAP=2.923J//gH_{1 \times \text{ECAP}} = 2.923 J//g was obtained after 1st ECAP pass

    Hot Compression Test of Heat Resistant Steel

    No full text
    This article deals with the analysis of formability of heat resistant steel type 9Cr-1Mo by physical laboratory simulation - hot compression test. The 9Cr-1Mo steel belongs to modern 9%Cr tempered martensitic steel for high-temperature applications in advanced thermal power plants. The shape of the sample was defined based on numerical simulations. The laboratory simulation of forming process called physical simulation - specifically hot compression test was realized in the temperature range from 500 to 950°C and total deformation in the range from 39 to 52%. Cracks formed during hot compression test in the notches are assessed. Subsequently, the relation between the compression temperature, strain, and crack length was defined. The suitable workability corresponds to the temperature range 650-900°C, it agrees with results of numerical simulations. At a temperature of 900°C there is marginal relative deformation without rupture ε =39.9%, which corresponds to the value according to simulations NCL criteria 0.501

    Formation of ultrafine-grained (UFG) structure and mechanical properties by severe plastic deformation (SPD)

    No full text
    Commercial pure cooper (99,9% Cu) was deformed by equal channel angular pressing (ECAP) using up to 10 passes, route C. The evolution of microstructure and fracture character were observed by OM, SEM and TEM. The mean grain size decreased with increasing deformation, after 10 passes to 100 – 300 nm. TEM analysis suggested the possible nanostructure formation mechanism by the formation of cellular structure in grains, forming of subgrains and then forming of high angle nanograins with random orientation. Fractures of ECAP Cu material after 10 passes had transcrystalline ductile character with dimple morphology

    Formability Evaluation of Aluminium Alloys by FLD Diagrams

    No full text
    The goal of the present work is evaluated mechanical properties and forming limit diagrams of ambient rolled aluminium alloy based on AlMgSi. Forming limit diagrams are convenient and often used as a tool for the classification of the formability and the evaluation of the forming process of sheet materials. Forming limits of sheet metal are represented in the forming limit diagrams occurring by various deformation states. The most widely used type is the Keeler-Goodwin diagram. Input data got from static tensile test are important for formability evaluating of the thin sheet by mathematical simulations, such as tensile strength, yield strength, elongation, and the strain hardening exponent. The result is a consideration of the suitability of the material for stamping technology

    The Effect of Severe Plastic Deformation and Heat Treatment on CuCrZr Alloys

    No full text
    CuCrZr alloy was subjected to equal channel angular pressing method, belonging to the severe plastic deformation group, followed by heat treatment under different ageing conditions to optimize mechanical properties of the alloy. Before equal channel angular pressing, CuCrZr alloy was treated by solution annealing at temperature 1020°C for 1 h. Afterwards, samples were pressed through an equal channel angular pressing die once at room temperature and subjected to artificial ageing under different conditions (200, 400, 450, 480°C for 30, 60, 90, 120, 150 min). Optimization of the CuCrZr alloy was done through the study of mechanical properties and microhardness as a function of ageing temperature and time considering the progress in microstructural/substructural features

    Investigation of the Ultrafine-Grained Structure Formation Under Different Strain Rates

    No full text
    The present paper deals with a study on formation of specific substructural features in OFHC copper processed by equalchannel angular pressing (ECAP) considering different strain rate conditions. Since two mechanical tensile testing equipments were being used, strain rate response could be studied in a wide range (both in static and dynamic regimes). Moreover, the copper before tensile testing was subjected to drawing and ECAP, separately, which allows to study the influence of both structural and substructural features (CG vs. UFG structure). Considering the static regime, it was found that UFG materials have advanced properties, showing higher strength and ductility in comparison to their CG counterparts. However, this is valid only to the critical value of the strain rate. In the dynamic regime, mathematical linearized results imply that ultimate tensile strength in samples processed by ECAP increases twice every 10 s-1 rising, however, they lost approximately the same plastic properties than samples after drawing. Differences in the progress of mechanical properties are related to specific structural and substructural features evolved in the material during ECAP processing. Above mentioned features were studied in detail by methods of transmission and scanning electron microscopy (TEM, SEM)

    Influence of ECAP-Back Pressure on the Porosity Distribution

    No full text
    The main aim of this paper is to show how back pressure equal channel angular pressing (ECAP-BP) influences the porosity distribution in powder metallurgy (PM) aluminium alloys. When back pressure is applied, the accumulation of damage in deformed samples decreases due to the fact that the shear strain takes place under predominantly compressive stresses. Consequently, ECAP-BP influences the porosity distribution in terms of the severe shear deformation involved. According to the obtained results, interesting applications for this new progressive method in physical and metallurgical research fields are shown

    Zastosowanie testu obrabialności do intensywnego odkształcenia plastycznego

    No full text
    The aluminium alloy with chemical conception AlMgSi prepared by PM (powder metallurgy) technology was used. The experiments such as a ring and compression test, ECAR (equal channel angular rolling) for determination of friction coefficient, stress-strain curves and material workability based on analytical methods (Freudenthal, Cockcroft-Latham and normalized Cockcroft-Latham criteria) were performed. Numerical simulations of sample processed by ECAR was carried out by a software Deform 3D with focus on the description of stress, strain fields and workability criteria (Cockcroft-Latham and normalized Cockcroft-Latham). The prediction of fracture formations in a real ECAR sample during processing conditions was also done.Stop aluminium o składzie chemicznym AlMgSi przygotowano metodą proszkową. Wykonano badania takie jak próba ściskania swobodnego pierścieni i walcowatych, ECAR (wyciskanie w kanale kątowym z walcowaniem) w celu wyznaczenia współczynnika tarcia, krzywych naprężenie-odkształcenie oraz podatności materiału na odkształcenie z użyciem metod analitycznych (kryterium Freudenthal, Cockcroft-Latham i znormalizowane Cockcroft-Latham). Symulacje numeryczne dla próbki poddawanej procesowi ECAR przeprowadzono przy pomocy oprogramowania Deform 3D z naciskiem na opis pól sił i naprężeń oraz kryteriów obrabialności (Cockcroft-Latham i znormalizowane Cockcroft-Latham). Przeprowadzono również symulacje mozliwości tworzenia się pęknięć w rzeczywistej próbce poddanej procesowi ECAR

    Mechanical and Structural Properties of High Purity Al Processed by ECAP

    No full text
    The mechanical properties and substructure formation of high purity aluminium (99.999%) processed by severe plastic deformation method (equal channel angular pressing) were studied. The equal channel angular pressing process was carried out at room temperature by route C (sample rotation around the axis about 180° after each pass) in a die with two channels intersecting at an angle of Φp = 90. The softening mechanism through dynamic recovery was recognized up to 6th equal channel angular pressing pass, however, after that the mechanical strengthening was revealed. The samples after equal channel angular pressing processing were annealed in different temperature and time conditions. The influence of annealing temperature and time on microhardness as well as diameter of grain size were investigated in samples processed by the 4th equal channel angular pressing pass
    corecore