131 research outputs found

    Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels

    Get PDF
    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl− secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl− secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl− conductance or basolateral Na+–K+-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl− secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl− secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKCα-dependent pathway

    Polarized Secretion of Interleukin (IL)-6 and IL-8 by Human Airway Epithelia 16HBE14o- Cells in Response to Cationic Polypeptide Challenge

    Get PDF
    BACKGROUND: The airway epithelium participates in asthmatic inflammation in many ways. Target cells of the epithelium can respond to a variety of inflammatory mediators and cytokines. Damage to the surface epithelium occurs following the secretion of eosinophil-derived, highly toxic cationic proteins. Moreover, the surface epithelium itself is responsible for the synthesis and release of cytokines that cause the selective recruitment, retention, and accumulation of various inflammatory cells. To mimic the damage seen during asthmatic inflammation, the bronchial epithelium can be challenged with highly charged cationic polypeptides such as poly-L-arginine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, human bronchial epithelial cells, 16HBE14o- cells, were "chemically injured" by exposing them to poly-l-arginine as a surrogate of the eosinophil cationic protein. Cytokine antibody array data showed that seven inflammatory mediators were elevated out of the 40 tested, including marked elevation in interleukin (IL)-6 and IL-8 secretion. IL-6 and IL-8 mRNA expression levels were elevated as measured with real-time PCR. Cell culture supernatants from apical and basolateral compartments were collected, and the IL-6 and IL-8 production was quantified with ELISA. IL-6 and IL-8 secretion by 16HBE14o- epithelia into the apical compartment was significantly higher than that from the basolateral compartment. Using specific inhibitors, the production of IL-6 and IL-8 was found to be dependent on p38 MAPK, ERK1/2 MAPK, and NF-kappaB pathways. CONCLUSIONS/SIGNIFICANCE: The results clearly demonstrate that damage to the bronchial epithelia by poly-L-arginine stimulates polarized IL-6 and IL-8 secretion. This apically directed secretion of cytokines may play an important role in orchestrating epithelial cell responses to inflammation

    Concomitant Hepatorenal Dysfunction and Malnutrition in Valvular Heart Surgery:Long-Term Prognostic Implications for Death and Heart Failure

    Get PDF
    BACKGROUND: Strategies to improve long-term prediction of heart failure and death in valvular surgery are urgently needed because of an increasing number of procedures globally. This study sought to report the prevalence, changes, and prognostic implications of concomitant hepatorenal dysfunction and malnutrition in valvular surgery. METHODS AND RESULTS: In 909 patients undergoing valvular surgery, 3 groups were defined based on hepatorenal function (the modified model for end-stage liver disease excluding international normalized ratio score) and nutritional status (Controlling Nutritional Status score): normal hepatorenal function and nutrition (normal), hepatorenal dysfunction or malnutrition alone (mild), and concomitant hepatorenal dysfunction and malnutrition (severe). Overall, 32%, 46%, and 19% of patients were classified into normal, mild, and severe groups, respectively. Over a 4.1-year median follow-up, mild and severe groups in-curred a higher risk of mortality (hazard ratio [HR], 3.17 [95% CI, 1.40–7.17] and HR, 9.30 [95% CI, 4.09– 21.16], respectively), cardiovascular death (subdistribution HR, 3.29 [95% CI, 1.14– 9.52] and subdistribution HR, 9.29 [95% CI, 3.09– 27.99]), heart failure hospitalization (subdistribution HR, 2.11 [95% CI, 1.25– 3.55] and subdistribution HR, 3.55 [95% CI, 2.04– 6.16]), and adverse outcomes (HR, 2.11 [95% CI, 1.25– 3.55] and HR, 3.55 [95% CI, 2.04– 6.16]). Modified model for end-stage liver disease excluding international normalized ratio and controlling nutritional status scores improved the predictive ability of European System for Cardiac Operative Risk Evaluation (area under the curve: 0.80 versus 0.73, P<0.001) and Society of Thoracic Surgeons score (area under the curve: 0.79 versus 0.72, P=0.004) for all-cause mortality. One year following surgery (n=707), patients with persistent concomitant hepatorenal dysfunction and malnutrition (severe) experienced worse outcomes than those without.  CONCLUSIONS: Concomitant hepatorenal dysfunction and malnutrition was frequent and strongly linked to heart failure and mortality in valvular surgery

    Risk Factors for HIV-1 seroconversion among Taiwanese men visiting gay saunas who have sex with men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Men having sex with men (MSM) accounts for 33.6% of all reported cases of HIV-1 infection in Taiwan. The aim of this study was to investigate the epidemiology of HIV-1 infection among MSM in gay saunas in Taiwan.</p> <p>Methods</p> <p>Patrons of 5 gay saunas were recruited for a weekly volunteer counseling and testing program from 2001 to 2005. Questionnaires were collected for a risk factor analysis. HIV-1 subtypes were determined using DNA sequencing and phylogenetic analyses.</p> <p>Results</p> <p>HIV-1 prevalence rates among MSM in gay saunas in 2001 through 2005 were 3.4%, 5.1%, 8.9%, 8.5%, and 8.3%, respectively. In total, 81 of 1, 093 (7.4%) MSM had HIV-1 infection. Fifty-two HIV-1 strains were genotyped, and all of them were subtype B. HIV-seropositive men were significantly younger than the seronegatives. Only 37.1% used condoms every time during sexual intercourse. A multivariate logistic regression analysis showed that the risk factors for HIV-1 were being uncircumcised (odds ratio (OR) = 2.19; 95% confidence interval (CI), 1.08~4.45); having sexual intercourse with at least 2 partners during each sauna visit (≥ 2 vs. ≤ 1, OR = 1.71; 95% CI, 1.02~2.89); and the role played during anal intercourse (versatile vs. an exclusively insertive role, OR = 2.76; 95% CI, 1.42~5.36).</p> <p>Conclusions</p> <p>Overall, 7.4% Taiwanese MSM participating in this study had HIV-1 subtype B infection. Uncircumcised, being versatile role during anal intercourse, and having sex with more than one person during each sauna visit were main risk factors for HIV-1 infection.</p

    Old Technique -New Evidence: Topical agents for musculo-skeletal injuries

    Get PDF
    The popular use of topical agents for the treatment of musculoskeletal injuries has persisted for centuries but not much scientific evaluations have been done. Since medicinal herbs are particularly popular in Asia, we started a systematic exploration on their choices, and their pharmacological activities; whether transcutaneous transport of bioactive components occur and above all, whether quality clinical evidences could be generated. We found that a search on the vast literature pool would reveal the favourable choices of herbal agents. Biological screening of those selected herbs showed that they probably follow three major common pathways to help with healing after injury, viz, anti-inflammation, pro-angiogenesis and cellular proliferation. Using a simple formula of selected herbs with the ideal bioactivities, evidence based clinical trials could be organized to further prove the efficacy. We have created two such formulae to be put on clinical trial. Our early pilot clinical trials on two minor injuries on the foot and one chronic inflammatory condition have yielded positive data on the value of such topical agents on pain and oedema control, as well as functional maintenance. There was also suggestion of more rapid bone healing. Although limitations exist clear with the small number of study subjects, the positive data and safe application support more studies

    Cellular Mechanisms Underlying the Laxative Effect of Flavonol Naringenin on Rat Constipation Model

    Get PDF
    BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM) elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC)), which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid), but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid). Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride) pretreatment reduced the naringenin-induced I(SC). In addition, significant inhibition of the naringenin-induced I(SC) by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator) was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation

    Differential Inhibitory Effects of CysLT1 Receptor Antagonists on P2Y6 Receptor-Mediated Signaling and Ion Transport in Human Bronchial Epithelia

    Get PDF
    BACKGROUND: Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT(1) receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT(1) and P2Y(6) receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT(1) receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. METHODOLOGY/PRINCIPAL FINDINGS: In this study, western blot analysis confirmed that both CysLT(1) and P2Y(6) receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT(1) antagonists inhibited the uridine diphosphate (UDP)-evoked I(SC), but only montelukast inhibited the UDP-evoked [Ca(2+)](i) increase. In the presence of forskolin or 8-bromoadenosine 3'5' cyclic monophosphate (8-Br-cAMP), the UDP-induced I(SC) was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked I(SC) potentiated by an Epac activator, 8-(4-Chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2'-O-Me-cAMP), while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2'-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced I(SC) potentiated by N(6)-Phenyladenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-6-Phe-cAMP; a PKA activator) and UDP-activated PKA activity. CONCLUSIONS/SIGNIFICANCE: In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT(1) receptor antagonists exert differential inhibitory effects on P2Y(6) receptor-coupled Ca(2+) signaling pathways and the potentiating effect on I(SC) mediated by cAMP and Epac, leading to the modulation of ion transport activities across the epithelia

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore