123 research outputs found

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    The primary cilium as a multiple cellular signaling scaffold in development and disease

    Full text link
    Primary cilia, single hair-like appendage on the surface of themost mammalian cells, were once considered to be vestigialcellular organelles for a past century because of their tinystructure and unknown function. Although they lack ancestralmotility function of cilia or flagella, they share common groundwith multiciliated motile cilia and flagella on internal structuresuch as microtubule based nine outer doublets nucleated from thebase of mother centrioles called basal body. Making cilia,ciliogenesis, in cells depends on the cell cycle stage due to reuseof centrioles for cell division forming mitotic spindle pole (Mphase) and assembling cilia from basal body (starting G1 phaseand maintaining most of interphase). Ciliary assembly requiredtwo conflicting processes such as assembly and disassembly andbalance between these two processes determines the length ofcilia. Both process required highly conserved transport system tosupply needed substance to grow tip of cilia and bring ciliaryturnover product back to the base of cilia using motor protein,kinesin and dynein, and transport protein complex, IFT particles.Disruption of ciliary structure or function causes multiple humandisorder called ciliopathies affecting disease of diverse ciliatedtissues ranging from eye, kidney, respiratory tract and brain.Recent explosion of research on the primary cilia and theirinvolvement on animal development and disease attracts scientificinterest on how extensively the function of cilia related to specificcell physiology and signaling pathway. In this review, I introducegeneral features of primary cilia and recent progress inunderstanding of the ciliary length control and signaling pathwaystransduced through primary cilia in vertebrates

    Upregulated Guanine Deaminase Is Involved in Hyperpigmentation of Seborrheic Keratosis via Uric Acid Release

    Full text link
    Seborrheic keratosis, which is a benign tumor composed of epidermal keratinocytes, develops common in the elderly. Uric acid generated by upregulated guanine deaminase (GDA) has been identified to cause UV-induced keratinocyte senescence in seborrheic keratosis. Seborrheic keratosis is also frequently pigmented. Growing evidences indicate that hyperuricemia is a risk factor of acanthosis nigricans, an acquired skin hyperpigmentation. The objective of this study was to investigate role of GDA and its metabolic end product, uric acid, in hyperpigmentation of patients with seborrheic keratosis using their lesional and non-lesional skin specimen sets and cultured primary human epidermal keratinocytes with or without GDA overexpression or uric acid treatment. GDA-overexpressing keratinocytes or their conditioned media containing uric acid increased expression levels of MITF and tyrosinase in melanocytes. Uric acid released from keratinocytes was facilitated by ABCG2 transporter with the help of PDZK1 interaction. Released uric acid was taken by URAT1 transporter in melanocytes, stimulating melanogenesis through p38 MAPK activation. Overall, GDA upregulation in seborrheic keratosis plays a role in melanogenesis via its metabolic end product uric acid, suggesting that seborrheic keratosis as an example of hyperpigmentation associated with photoaging

    A DOUBLETIME Kinase Binding Domain on the Drosophila PERIOD Protein Is Essential for Its Hyperphosphorylation, Transcriptional Repression, and Circadian Clock Function▿

    Get PDF
    A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins from hypo- to hyperphosphorylated species, events that are highly dependent on casein kinase 1ɛ (termed DOUBLETIME [DBT] in Drosophila melanogaster) and necessary for normal clock progression. Drosophila PER (dPER) functions in the negative limb of the clockworks by presumably binding to the transcription factor CLOCK (CLK) and inhibiting its transactivation activity. Here, we identify a small region on dPER that is conserved with mammalian PERs and contains the major in vivo DBT binding domain, termed dPDBD (for dPER DBT binding domain). This domain is required for the manifestation of molecular and behavioral rhythms in vivo. In the absence of the dPDBD, the dPER protein is present at constant high levels throughout a daily cycle, undergoes little phosphorylation, and is severely impaired in its ability to function as a transcriptional repressor. Our findings indicate that the binding of dPER to CLK is not sufficient for transcriptional inhibition, implicating a more indirect mode of action whereby dPER acts as a molecular bridge to “deliver” DBT and/or other factors that directly repress CLK-dependent gene expression

    Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion

    Get PDF
    Abstract Precise modulation of polymer brush in its thickness and grafting density can cause unexpected cell behaviors and regulated bioactivities. Herein, a nanoscale poly(dimethylsiloxane) (PDMS) brush was employed to use as a controllable material for cell adhesion. Facile fabrication of ultrathin monolayer PDMS nanobrush on an underlying substrate facilitated regaining cell adhesion through long-range cell attractive forces such as the van der Waals forces. We showed that cell adhesion is diminished by increasing the number of nanobrush layers, causing a gradual decrease of the effectiveness of the long-range force. The result demonstrates that ultrathin PDMS nanobrush can either promote or inhibit cell adhesion, which is required for various biomedical fields such as tissue-engineering, anti-fouling coating, and implantable biomaterials and sensors

    Cis

    Full text link
    corecore