127 research outputs found

    The Aqueous Extract of Rhizome of Gastrodia elata

    Get PDF
    This study aims to investigate the neuroprotective effect of the rhizome of Gastrodia elata (GE) aqueous extract on beta-amyloid(Aβ)-induced toxicity in vivo and in vitro. Transgenic Drosophila mutants with Aβ-induced neurodegeneration in pan-neuron and ommatidia were used to determine the efficacy of GE. The antiapoptotic and antioxidative mechanisms of GE were also studied in Aβ-treated pheochromocytoma (PC12) cells. In vivo studies demonstrated that GE (5 mg/g Drosophila media)-treated Drosophila possessed a longer lifespan, better locomotor function, and less-degenerated ommatidia when compared with the Aβ-expressing control (all P<0.05). In vitro studies illustrated that GE increased the cell viability of Aβ-treated PC12 cells in dose-dependent manner, probably through attenuation of Aβ-induced oxidative and apoptotic stress. GE also significantly upregulated the enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase, leading to the decrease of reactive oxidation species production and apoptotic marker caspase-3 activity. In conclusion, our current data presented the first evidence that the aqueous extract of GE was capable of reducing the Aβ-induced neurodegeneration in Drosophila, possibly through inhibition of apoptosis and reduction of oxidative stress. GE aqueous extract could be developed as a promising herbal agent for neuroprotection and novel adjuvant therapies for Alzheimer’s disease

    c-Jun N-terminal kinase activation has a prognostic implication and is negatively associated with FOXO1 activation in gastric cancer

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Since the biological function of c-Jun N-terminal kinase (JNK) in gastric cancer remains unclear, we investigated the clinical significance of JNK activation and its association with FOXO1 activation. Methods Immunohistochemical tissue array analysis of 483 human gastric cancer specimens was performed, and the results of the immunostaining were quantified. The correlation between JNK activation (nuclear staining for pJNK) and clinicopathological features, the proliferation index, prognosis or FOXO1 inactivation (cytoplasmic staining for pFOXO1) was analyzed. The SNU-638 gastric cancer cell line was used for in vitro analysis. Results Nuclear staining of pJNK was found in 38 % of the gastric carcinomas and was higher in the early stages of pTNM (P < 0.001). pJNK staining negatively correlated with lymphatic invasion (P = 0.034) and positively correlated with intestinal type by Laurens classification (P = 0.037), Ki-67-labeling index (P < 0.001), cyclin D1 (P = 0.045), cyclin E (P < 0.001) and pFOXO1 (P < 0.001). JNK activation correlated with a longer patients survival (P =0.008) and patients with a JNK-active and FOXO1-inactive tumor had a higher survival rate than the remainder of the population (P = 0.004). In vitro analysis showed that JNK inhibition by SP600125 in SNU-638 cells decreased cyclin D1 protein expression and increased FOXO1 activation. Further, JNK inhibition markedly suppressed colony formation, which was partially restored by FOXO1 shRNA expression. Conclusions Our results indicate that JNK activation may serve as a valuable prognostic factor in gastric cancer, and that it is implicated in gastric tumorigenesis, at least in part, through FOXO1 inhibition

    Constitutive activation of glycogen synthase kinase-3β correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer

    Get PDF
    Background: Aberrant regulation of glycogen synthase kinase-3 beta (GSK-3 beta) has been implicated in several human cancers; however, it has not been reported in the gastric cancer tissues to date. The present study was performed to determine the expression status of active form of GSK-3 beta phosphorylated at Tyr(216) (pGSK-3 beta) and its relationship with other tumor-associated proteins in human gastric cancers. Methods: Immunohistochemistry was performed on tissue array slides containing 281 human gastric carcinoma specimens. In addition, gastric cancer cells were cultured and treated with a GSK-3 beta inhibitor lithium chloride (LiCl) for immunoblot analysis. Results: We found that pGSK-3 beta was expressed in 129 (46%) of 281 cases examined, and was higher in the early-stages of pathologic tumor-node-metastasis (P < 0.001). The expression of pGSK-3 beta inversely correlated with lymphatic invasion (P < 0.001) and lymph node metastasis (P < 0.001) and correlated with a longer patient survival (P < 0.001). In addition, pGSK-3 beta expression positively correlated with that of p16, p21, p27, p53, APC, PTEN, MGMT, SMAD4, or KAl1 (P < 0.05), but not with that of cyclin D1. This was confirmed by immunoblot analysis using SNU-668 gastric cancer cells treated with LiCl. Conclusions: GSK-3 beta activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis. Thus, these findings suggest that GSK-3 beta activation is a useful prognostic marker for the early-stage gastric cancer.Hirakawa H, 2009, ONCOL REP, V22, P481, DOI 10.3892/or_00000460Dar AA, 2009, ONCOGENE, V28, P866, DOI 10.1038/onc.2008.434Holmes T, 2008, STEM CELLS, V26, P1288, DOI 10.1634/stemcells.2007-0600Wang Q, 2008, CELL DEATH DIFFER, V15, P908, DOI 10.1038/cdd.2008.2Takahashi-Yanaga F, 2008, CELL SIGNAL, V20, P581, DOI 10.1016/j.cellsig.2007.10.018Pan MH, 2007, J AGR FOOD CHEM, V55, P7777, DOI 10.1021/jf071520hShakoori A, 2007, CANCER SCI, V98, P1388, DOI 10.1111/j.1349-7006.2007.00545.xZheng HC, 2007, ANTICANCER RES, V27, P3561Saegusa M, 2007, J PATHOL, V213, P35, DOI 10.1002/path.2198Ma C, 2007, CANCER RES, V67, P7756, DOI 10.1158/0008-5472.CAN-06-4665Forde JE, 2007, CELL MOL LIFE SCI, V64, P1930, DOI 10.1007/s00018-007-7045-7Li YW, 2007, J BIOL CHEM, V282, P21542, DOI 10.1074/jbc.M701978200Ding QQ, 2007, CANCER RES, V67, P4564, DOI 10.1158/0008-5472.CAN-06-1788Kunnimalaiyaan M, 2007, MOL CANCER THER, V6, P1151, DOI 10.1158/1535-7163.MCT-06-0665Soto-Cerrato V, 2007, MOL CANCER THER, V6, P362, DOI 10.1158/1535-7163.MCT-06-0266Cao Q, 2006, CELL RES, V16, P671, DOI 10.1038/sj.cr.7310078Yang CH, 2006, PRECIS AGRIC, V7, P33, DOI 10.1007/s11119-005-6788-0Crew KD, 2006, WORLD J GASTROENTERO, V12, P354Mai W, 2007, ONCOLOGY-BASEL, V71, P297, DOI 10.1159/000106429Tan J, 2005, CANCER RES, V65, P9012, DOI 10.1158/0008-5472.CAN-05-1226Shakoori A, 2005, BIOCHEM BIOPH RES CO, V334, P1365, DOI 10.1016/j.bbrc.2005.07.041Farago M, 2005, CANCER RES, V65, P5792Ghosh JC, 2005, CLIN CANCER RES, V11, P4580Liao XB, 2003, MOL CANCER THER, V2, P1215Lee HS, 2003, J PATHOL, V200, P39, DOI 10.1002/path.1288Doble BW, 2003, J CELL SCI, V116, P1175, DOI 10.1242/jcs.00384Gotoh J, 2003, CARCINOGENESIS, V24, P435Goto H, 2002, ORAL ONCOL, V38, P549Lee HS, 2001, INT J CANCER, V91, P619D`Amico M, 2000, J BIOL CHEM, V275, P32649, DOI 10.1074/jbc.M000643200Endoh Y, 2000, J PATHOL, V191, P257Wu LY, 1998, J NATL MED ASSOC, V90, P410WOODGETT JR, 1984, BIOCHIM BIOPHYS ACTA, V788, P339

    Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although FOXO transcription factors may have an anti-angiogenic role, little is known about their role in tumor angiogenesis. The present study was performed to investigate the correlation between the constitutive expression of phosphorylated FOXO1 (pFOXO1) and angiogenesis in gastric cancer.</p> <p>Methods</p> <p>Immunohistochemistry was performed on tissue array slides containing 272 gastric carcinoma specimens, and the correlations between the cytoplasmic pFOXO1 expression in gastric cancer cells and CD34-immunopositive microvessel area (MVA) or the expressions of angiogenesis-related molecules were analyzed. <it>In vitro </it>analyses with Western blotting and semiquantitative reverse transcription-polymerase chain reaction were performed using the stable SNU-638 gastric cancer cell line transfected with lentivirus-delivered FOXO1 short hairpin RNA.</p> <p>Results</p> <p>The cytoplasmic expression of pFOXO1 in tumor cells was observed in 85% of gastric carcinoma cases, and was found to be positively associated with higher MVA (<it>P </it>= 0.048). Moreover, pFOXO1 expression was positively correlated with the expressions of several angiogenesis-related proteins, including hypoxia inducible factor-1α (HIF-1α, <it>P </it>= 0.003), vessel endothelial growth factor (<it>P </it>= 0.004), phosphorylated protein kinase B (<it>P </it>< 0.001), and nuclear factor-κB (<it>P </it>= 0.040). In contrast, the expression of pFOXO1 was not correlated with that of phosphorylated signal transducer and activator of transcription 3 or β-catenin. In addition, cell culture experiments showed that FOXO1 suppression increased the mRNA and protein expressions of HIF-1α.</p> <p>Conclusion</p> <p>Our results suggest that pFOXO1 expression in cancer cells plays a role in gastric cancer angiogenesis via mechanisms involving various angiogenesis-related molecules. Animal experiments are needed to confirm the anti-angiogenic role of FOXO1 in human gastric cancer.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore