7 research outputs found

    Analysis constants for database of neutron nuclear data

    Get PDF
    At present there is a variety of experimental and calculation nuclear data which arerather entirely presented in the following evaluated nuclear data libraries: ENDF (USA), JEFF(Europe), JENDL (Japan), TENDL (Russian Federation), ROSFOND (Russian Federation).Libraries of nuclear data, used for neutron-physics calculations in programs: Scale (OrigenArp),MCNP, WIMS, MCU, and others. Nevertheless all existing nuclear data bases, includingevaluated ones, contain practically no information about threshold neutron reactions on {232}Thnuclei; available values of outputs and cross-sections significantly differ by orders. The workshows necessity of nuclear constants corrections which are used in the calculations of grids andthorium storage systems. The results of numerical experiments lattices and storage systemswith thorium

    Particularities of spatial kinetics of hybrid thorium reactor installation containing the long neutron source based on magnetic trap

    Get PDF
    In this work, we study the features of the spatial kinetics of installation as a hybrid thorium reactor with an elongated plasma neutron source based on a magnetic trap. The active zone of the installation under study consists of an assembly of hexagonal fuel blocks of a unified design and a long solenoid with a high-temperature plasma column passing through the axial region of the core. Combining engineering expertise in creating nuclear reactors with a physics-technical potential for obtaining high-temperature plasma in a long magnetic trap we ensure the solution of the multidisciplinary problem posed. These studies are of undoubted practical interest, since they are necessary to substantiate the safety of operation of such hybrid systems. The research results will allow optimizing the active zone of the hybrid system with leveling the resulting offset radial and axial energy release distributions. Results of our study will be the basis for the development of new and improvement of existing methods of criticality control in related systems such as "pulsed neutron source - subcritical fuel assembly"

    Dynamics of population of gadolinium-156 nuclei energy levels during neutron pumping of isotope-modified gadolinium oxide

    Get PDF
    The possibility of transformation of energy of fast and epithermal neutrons to energy of coherent photon radiation at the expense of a neutron pumping of the active medium formed by nucleus with long-living isomerous states is theoretically described. The channel of the nucleus formation in isomeric state as a daughter nucleus resulting from the nuclear reaction of neutron capture by a lighter nucleus is taken into consideration for the first time. The analysis of cross sections dependence of radiative neutron capture by the nuclei of gadolinium isotopes Gd155 and Gd156 is performed. As a result, it is stated that the speed of Gd156 nuclei formation exceeds the speed of their β€œburnup” in the neutron flux. It is provided by a unique combination of absorbing properties of two isotopes of gadolinium Gd155 and Gd156 in both thermal and resonance regions of neutron energy. The possibility of excess energy accumulation in the participating medium created by the nuclei of the pair of gadolinium isotopes Gd155 and Gd156 due to formation and storage of nuclei in isomeric state at radiative neutron capture by the nuclei of the stable isotope with a smaller mass is shown. It is concluded that when the active medium created by gadolinium nuclei is pumped by neutrons with the flux density of the order of 1013 cm-2Β·s-1, the condition of levels population inversion can be achieved in a few tens of seconds. The wave length of the radiation generated by the medium is 0.0006 nm
    corecore